+1 (713) 263-3776 | Sales Toll-Free: (855) SELL BPM | 24/7 Service: +1 (832) 617-5702
Tape In/Tape Out Video

Tape In/Tape Out Video

Tape In/Tape Out Video

Tape-In

The X-Stream Series Tape Feeder System is the reliable, precise automated tape input peripheral for the BPM Microsystems automated programming systems. The X-Stream Series offers a broad range of carrier tape sizes, from 8 to 56mm. Tightly coupled with BPWin™ process control software, the X-Stream Series intelligently advances the feeder on command, ensuring the feeder presents the next device as needed.

The X-Stream Series provides easy setup and fast changeover. Intuitive buttons control tape advance and reverse for simple pick point adjustment and calibration. Each feeder body includes an input reel holder, accommodating reels up to 15 inches in diameter. An ergonomic handle eases operator handling and installation.

Small CSP package handling requires smooth indexing, accuracy, and repeatability. The 8mm and 12mm X-Stream Series feeders are specially engineered to include a pick window with a spring-loaded insert. This stabilizes vibration by applying downward pressure to the carrier tape, resulting in the precise presentation of small components to the APS nozzle.

Designed for high-speed pick and place machines, X-Stream Series feeders are robust with minimal service requirements. If an unexpected error does occur, the onboard diagnostics feature and electronic calibration make troubleshooting fast and easy.

V-TEK TM-50 MK2 Tape Output Machine

Large, small, or difficult-to-place parts are easy to tape with V-TEK’s TM-50. The microprocessor-controlled sealer and stepper motor drive assure precise handling of all taping parameters. Several advance speeds are selectable to accommodate problem parts and to minimize jumping. The innovative set up and change-over design allow an operator to change over carrier and cover tapes in minutes. BPM’s TM-50 MK2 has more sensors than other APS suppliers for maximum throughput and minimum errors.

Flexible, easy-to-use, menu-driven software and advanced electronic characteristics make the TM-50 a perfect choice for your taping needs.

Now available with a side-mount option for the V-TEK TM50. This configuration offers additional flexibility by allowing the machine to utilize options for tape, tray, tube, and marking simultaneously. The V-Tek TM-50 is compatible with both 3000 and 4000 series APS.

Offline Automated Programming vs Inline SMT Programming

Offline Automated Programming vs Inline SMT Programming

In the case study “What is the Best Way to Get Devices Programmed,” BPM Microsystems explored six main ways to get your data on devices. The answer is “Depends.” The short answer is there is no one way that is always better than another. This case study explores two of those six methods: Inline SMT programming and Off-line programming.

A small segment of electronic manufacturing services (EMS) and Original Equipment Manufacturers (OEMs) can use inline programming solutions effectively and economically, compared to off-line programming. A lack of flexibility, high cost, and the specter of obsolescence should raise questions about the long-term viability of Inline programming.

RoadRunner Inline Programmer from Data I/O

 

 

 

Inline SMT Programming

Inline SMT programming is a solution to consider for narrow segments of device programming requiring short programming times, with medium to high volume, for just one device type. Back in the day, that’s what programmed some of the most popular cell phones, when on-board memory sizes were Mbits compared to today’s designs with Gbit memory sizes. Benefits of inline programming include just-in-time programming (which has its own problems lately; see article here), simplified inventory management, and lean manufacturing. If that sounds like your process, and that process won’t change in the next five years, inline programming should be considered (or possibly programming at test, but that’s for a future article).

RoadRunner is an inline SMT programming solution from Data I/O; it has been on the market since the early 2000s. Data I/O advertise the RoadRunner as The world’s only just-in-time inline programming system.” There are other inline programmers as well; for the most part, they are sophisticated, albeit expensive, home-grown solutions.

When programming times are in excess of the beat rate  (beat rate is the total throughput per time on an SMT line) of the SMT line, inline SMT programming becomes less attractive because the programmer is not providing enough parts to keep up with the line speed. In short, programming becomes the line bottleneck. As data density, device complexity, and the number of devices continue to increase, the need to reduce the cost of programming will be amplified like never before. Inline programming becomes less cost-effective and less time-effective as programming time increases because multiple units may be required to keep pace with the line beat rate. 

Inline is Wide

Inline solutions attach at the tape feeder table, and are large, compared to standard tape feeders, taking up to 6 (or more) feeder positions on the placement machine. Depending on the complexity and mix of devices delivered on the tape reel, there may not be spare “real estate” for the inline programmer. It’s important to verify there’s room before committing to an inline solution.

Multiple inline programmers may be required per machine if the programming time is longer than a single system can keep up with, or if multiple programmed devices are needed. That has a double cost: less available tape space, and the expense of additional inline programmers. The problem is obvious. The potential requirement to add another placement machine makes device programming inline a very expensive process. 

Socket Capacity

RoadRunner utilizes sockets to program devices. Sockets are the electro-mechanical interface that uploads the signal from the computer to program a device. A small robotic arm moves the blank device to an awaiting socket and then returns the freshly programmed device to the tape, which feeds directly to the SMT pick and place machine. Sockets are “consumables” and require cleaning, maintenance, and replacement when their lifecycle is complete. Normally, the lifecycle can be managed between shifts, but what happens when a socket fails? Your expensive SMT will have to idle until the socket is replaced. BPM Automated systems have built-in fault tolerance; if a socket fails, the system simply bypasses that socket until it can be replaced. This may only cause a slight reduction in throughput, rather than shutting down the SMT line.

Backups

Inline programmers require redundant back-ups because of the high cost of line-down events on the SMT line. What happens if the backup inline programmers go down as well? Regardless, backup inline programmers are an additional expense, but beware if you get talked into buying only one.

Depending on the number of SMT lines at your facility, each placement machine will require its own set. This can begin to add up quickly, especially if you factor in backups. What’s more, if you have different SMT equipment, you probably can’t share a RoadRunner made for different machine brands: for example, a RoadRunner designed for a Fuji SMT most likely won’t operate on a Juki machine.

Expensive

Inline SMT programming solutions tend to run on the pricey side, especially when backup systems are factored in. If the SMT line is idle, the inline programmer is idle as well. If expensed using a standard five-year depreciation, there’s no guarantee that an inline programmer will not be sitting on a shelf while it’s still being “paid” for (perhaps by no fault of its own, but because of changes in programmables or a loss of a particular project). Today, product life cycles are shorter than ever before. Consider the financial model before investing in inline programming. 

Crystal Ball

Unless you can see into the future, it’s difficult to know what your SMT line will look like in a year, let alone five. What happens if your project changes or design modifications necessitate different programmables? RoadRunner, for example, is offered in a range of sizes; if a larger device is spec’d, you may need a new RoadRunner, while the “old” programmer collects dust on a shelf. More likely, more data is required on the device, which will slow the entire line, unless more inline programmers are purchased. 

Off-line Programming

Off-line programming, like the name implies, is a separate process where blank chips are programmed on high-speed robotic systems and placed into output media, usually tape. Off-line machines are best suited for medium to high volume, high mix (many different types of devices); they have more capacity and greater flexibility. They can change quickly to adapt to new projects and will not become obsolete when a project changes. For instance, BPM Microsystems Automated Programmers have almost no size or type limitation for devices; they can handle CSP devices as small as 0.5 x 1.0 mm, or QFP devices up to 35x35mm.

Flexible

The flexibility comes from the sockets. Depending on the device, up to 4 sockets can be installed on each site. Therefore, it’s possible to program thousands of devices per hour (depending on the complexity of programming specifications and peripheral operations, such as laser marking). The same socket used to create the first article is also used for production.

Same Process

It’s worth mentioning that off-line programming utilizes the exact same process used on placement machines: reels of components and devices are loaded by an operator. Reels of programmed devices take up less space on the placement machine (1 or 2 slots) than an inline programmer (6 or more). What’s more, inline programming systems require fresh reels of blank devices periodically, requiring a pause while the operator feeds in a new tape. Devices programmed off-line can be set up with two (or more) locations the SMT machine can use; as the tape reel runs out, it shifts over to a fresh reel while the operator replaces the empty reel with a new one.

Scalable

Off-line programming systems are scalable. As needs change, you can add sockets, sites, shifts, or even additional systems. BPM systems make adding additional shifts simple. Set-ups and operations do not require a highly experienced technician. BPM systems are designed to run three shifts with over 85% utilization rate. One off-line Automated Programming System can support multiple SMT lines. 

High Mix

Inline SMT programming systems, such as RoadRunner, are not made for high-mix programming. Each system is dedicated to a particular device; depending on the device, you may need a whole new RoadRunner. BPM Automated systems can switch jobs in typically 15 minutes or less; they are up and running while comparable systems require two to three times more time to set up. That means BPM systems are producing while other systems are still being set up. Over the course of a year, this can equal hundreds of additional hours of productivity, even in one-shift shops.

Small Footprint

Automated programming systems are surprisingly compact when you consider their capabilities. BPM’s latest system, the 3928, is 162 x 96cm (tape in/out takes up a little more room) and is capable of programming 28 devices simultaneously. It uses standard factory power; the only additional requirement is compressed air. Typically, the system can be installed on the same floor as the SMT line. Machines are installed and operational within five working days.

Conclusion

  Inline SMT Programming Off-line Programming
Number of tape slots on SMT machine Up to 6 for each device 1-2 (depends on device/tape width)
Number of programmers 1 for each device (plus backup) 1
(can supply several SMT lines)
High volume programming Yes Yes
High mix  No Yes
Universal  No Yes
Require advanced operator No No
Scalable Limited/ Expensive* Yes
Need backup systems Yes No (spare site recommend)

*Inline is scalable but the cost is double to go from 1 to 2. Offline has an incremental cost much less than inline

Inline SMT programming is a solution to consider for high volume, low mix programming with very short programming times. It lacks the flexibility available from off-line programming systems. With advances in complex programming, especially for automotive applications, inline may be a good fit now, but will that still be true a year from now? For a growing number of companies and applications, off-line programming may be a future-proof investment that generates positive ROI in weeks, not years (see ROI article).

For more information about BPM’s Automated Programming Systems or to speak to one of our experts about your particular requirements, please call +1 (713) 263-3776 or toll-free in the US or Canada (855) SELL BPM.

9th Gen Site Technology Surpasses 40K Supported Devices

9th Gen Site Technology Surpasses 40K Supported Devices

9th Gen Site Technology Surpasses 40K Supported Devices

Number of Devices Supported by 9th Gen

BPM launched 9th Generation universal site technology with advanced CSP (chip scale package) handling in 2016. We’re excited to announce BPM supports over 40,000 devices on 9th Gen, more than three times our closest competitor. The advanced sites are backward compatible with many 7th and 8th Gen sockets, with major advances in programming times.

Fastest, Most Universal

9th Gen produces the fastest programming times, up to 400 MB per second, which is 2 to 9 times faster for flash devices than 7th Gen. Vector engine co-processing, which was released on 8th Gen, supports double data rate and HS400. Combined with the Vector Engine Co-Processor, 9th Gen Programmers accelerate flash memory waveforms for programming near the theoretical limits of silicon design– the faster the device, the faster it’s programmed. Universal Support for over 40,000 devices with daily additions for all device technologies– high & low voltage devices.

Mission-Critical Quality– Built-in self-test ensures correct waveform generation on all pin drivers. Waveform fidelity produces a high-programming yield. 9th Gen supports the most demanding programming applications. We still offer 7th Gen manual programmers and sockets for Mil-spec legacy devices. When combined, 7th and 9th Gen support over 90,000 devices!

Complete Ecosystem

BPM Microsystems has ownership of all designs, manufacturing, and support for all programming sites, robotics, vision systems, and software, so we can provide unmatched support and responsiveness

  • Reduce your time to market by doing New Product Introduction/First Article through Automated Production with the same hardware, algorithms, and software
  • 2900 and 2900L for 9th Gen Manual Production and Fast First Articles, plus 2710 and 1710 7th Gen Manual Programmers; the New 3901, New Seven-Site 3928, & 4910 for Automated Programming System Productiononly BPM can deliver
Programmable Device Shortage Update

Programmable Device Shortage Update

In an article published in Forbes on February 25, President Joe Biden signed “Executive Order on America’s Supply Chains” to address the global semiconductor chip shortage. Designed as a 100-day review of supply chain effectiveness, and citing that the United States accounts for 12.5% of semiconductor manufacturing, this Executive Order is a part of a continuous stream of policy assuming that “made in America” is good for America.

According to a new Reuters article, here are some updates on the on-going global chip shortage.

General Motors

GM has extended production cuts at four of their North American plants due to chip shortage. It’s being reported that the shortage could cut up to $2 Billion from their 2021 forecast.

Ford

The shortage is hitting production of the most popular truck in the world:  F-150 pickup trucks. Ford could lose 10% to 20% of planned first-quarter vehicle production.

Volkswagen AG

The chip shortage will impact production at Wolfsburg and Kassel plants. VW was the first major automaker to announce that chip shortages were affecting production. Volkswagen is the world’s second-largest car company (behind Toyota).

Groupe Renault

The chip shortage could reduce Renault production by about 100,000 vehicles this year. Renault is a French automaker.

Honda

Honda has announced a cut in its 2021 sales target by 100,000 vehicles due to the chip shortage. Honda is fifth in sales worldwide.

Nissan

Nissan, Japan’s third-largest automaker and #10 in the world have lowered its target by 150,000 vehicles due to the chip shortage.

Tesla Inc

Elon Musk said Tesla’s plant in Fremont, California shut down for two days in February due to “parts shortages”.

Automotive Suppliers

Visteon

Visteon, a major automotive component supplier, has said uncertainty around the semiconductor shortages will lead to some plant closures in the first half of 2021 before things stabilize in the third and fourth quarters.

Stellantis NV

Stellantis‘ factories in Germany and Spain were impacted due to the programmable device shortage. Union sources told Reuters in February that Stellantis planned to slow production at its plant in Italy, and furlough 7,000 workers. Stellantis’ supported brands include Alfa Romero, Chrysler, Dodge, Jeep, Ram, Fiat, and Opel.

Other Industries

Sony

Sony’s Chief Finacial Officer Hiroki Totoki said it is difficult for the company to increase the production of the popular gaming system, the PS5, amid the shortage of semiconductors. The PS5 launched in November of 2020, and is one of the most popular systems in the world.

Legacy Automated Programmers from BPM Microsystems

Legacy Automated Programmers from BPM Microsystems

Legacy Automated Programmers from BPM Microsystems

Hundreds Still Running

Several hundred of our legacy Automated Programming Systems (defined as machines we no longer offer for sale) are still in operation; many 15 years and older. There may be some compelling reasons to upgrade (such as capacity issues, or slower programming times for newer devices), but if it ain’t broke, why fix it? Many of these older machines have been paid off for years (other than spare parts and consumables), so as long as they are still productive, an older system is a pure profit center.

BPM still supports many systems (there are some exceptions, so please check the End of Life page). You can continue to get parts and support with a current hardware and/or software contract.

 

Upgrade

To find out more about upgrading your existing 3800MK2 or 3900 to make it faster and have greater, more accurate throughput, let us know!

Available Upgrades

APS legacy models 3800MK2 and 3900 use upward vision camera technology for component alignment. These APS can be upgraded to get new hardware and software for on-the-fly vision alignment and higher performance with a CyberOptics on-the-fly alignment camera and other improvements with the Z and Theta Axis.

Compelling Reasons to Upgrade

Performance: The 3800MK2 to 3810 upgrade combined with other hardware improvements will allow 800 DPH (3800MK2) to an impressive 1200 DPH. This is accomplished because of the sophisticated CyberOptic LNC-120 for on-the-fly vision alignment and improved pick and place movement using hardware/software advancements.

The 3900 to 3910 upgrade improves Devices Per Hour from 1100 DPH (3900) to an impressive 1432 DPH for the 3910.

Component Automeasure, supported with the CyberOptics alignment camera allows customers to set up jobs more quickly. WhisperTeach allows for faster job setups and changeovers.

CSP devices are supported. The LNC-120 is a sophisticated alignment camera capable of accurately and repeatedly aligning the smallest programmable devices presently on the market as of September 2019.

This is not simply a “camera change.” Upgrade include a new e-chain, improved hardware and performance improvements for the Z-Axis, plus faster, more accurate, and faster Theta performance (rotation alignment).

Legacy Machines Still In Operation

  APS Model Operating Machines by Generation
3000FS
3610 6th Gen

6th Gen launched in 2000 (20 years)
4610
3710-3710MK2

7th Gen

7th Gen launched in 2007 (13 years)

4710
3800 8th Gen

8th Gen launched in 2011 (8+ years)
3800MK2
3800W7-32
4800
4800W7-32

 

Windows 10

We’re pleased to announce that BPWin Windows 10 Compatible version went live with the launch of version 7.0.0. BPWin is currently compatible with Windows XP, Windows 7, and Windows 10, 64-Bit operating system; users can now take advantage of the newest Windows operating system with greater speed, security, and access to the latest OS updates (Microsoft announced it will cease support for legacy OS– see full info from Microsoft here).

Important: you’ll need a current Software Support Contract for all APS and 2XXX Manual Programmers. Contact Inside Sales for contract support.

If you’re interested in Windows 10 support on your current system, contact Technical Support for more information. You may need additional hardware to support Windows 10.

Upgrade

To find out more about upgrading your existing 3800MK2 or 3900 to make it faster and have greater, more accurate throughput, let us know!