

Mastering eMMC Device Programming

How to Maximize Speed, Quality and Cost Savings

By George Gendy

August 3, 2017

BPM Microsystems
15000 Northwest Freeway

Houston, Texas 77040 USA
Telephone: +1 713 688 4600

www.bpmmicro.com

BPM Microsystems | www.bpmmicro.com 2

BPM Microsystems | www.bpmmicro.com 3

Abstract

Exceptional products start with exceptional programming. Mass programming is one of

the important stages in final product build and release.

This white paper shares information to help engineers involved in the industry of eMMC

device programming. It summaries the basic specification that all eMMC devices follow

including device architecture, bus protocols, modes, data read/write, and production

state awareness.

The white paper also lists the criteria decision makers should consider when evaluating

the effectiveness of their Universal Programming equipment. The quality and efficiency

of programming equipment affect the quality and cost of the final product as well as time

to market.

BPM Microsystems | www.bpmmicro.com 4

BPM Microsystems | www.bpmmicro.com 5

Table of Contents

Introduction 7

eMMC Architecture 8

Bus Protocol 10

Speed Mode Advancements 10

Single Data Rate (SDR) 10

Dual Data Rate (DDR) 10

HS200 11

HS400 11

Data Read/Write 11

Production State Awareness 12

5 Tips When Programming eMMC 13

Use HS400 Mode for High Throughput 13

Ensure Clean Signal Quality for High Yield 13

Purchase Adaptable Socket Modules for Cost Savings 14

Invest in Automated Programmers for High Volume 14

One Programmer To Rule Them All 15

Summary 15

References 17

For More Information 19

BPM Microsystems | www.bpmmicro.com 6

BPM Microsystems | www.bpmmicro.com 7

Introduction

Over the past decade, the demand for high-density, nonvolatile memories with a small footprint

has increased dramatically. Two of the most popular markets driving this demand are handheld

devices and automotive. Demand for handheld devices continues to drive the research for high-

density, low power, low-cost, high-speed, nonvolatile memories while maintaining the small

footprint. NAND-type flash memory is the perfect match for such a market. The increased

consumer demand for high-tech features in automobiles, such as infotainment systems, are also

a big drive of demand for high-density NAND-based devices.

Flash memory is a solid state, nonvolatile storage medium that can be electrically erased and

reprogrammed. There are two types of flash memory, NAND and NOR, named after the NAND

and NOR logic gates. NAND flash memory was introduced by Toshiba scientists in 1987 [1] and

can be written and read in blocks. NAND flash memory was not fully utilized until recently due to

its low reliability. Early NAND flash experienced bit flips, the possibility that some programmed

bits read back as zero while previously programmed bits read as one, or vice versa. Bit flips

introduced bad blocks over the service life of the device. With the advances in research in Error

Correction Codes (ECC) [2][6][7], along with implementing new Bad Block Management (BBM)

schemes [3][7], engineers were able to better detect and correct bit flips. This increased the

appeal of NAND flash memory and allowed it to dominate over its more-expensive rival, NOR

flash memory.

The inevitable use of ECC and BBM schemes with “RAW” NAND devices lead to increased

complexity when handling these devices. To avoid such difficulties, and reduce the design and

time to market cost, the trend shifted to the use of “managed NAND devices”. The typical

architecture of any managed NAND device includes a raw NAND memory, which is the main

storage media, plus a microcontroller [5]. The microcontroller acts as the interface between the

host and the raw NAND memory. It does all management tasks such as bad block

management, error detection and correction, wear leveling, and more. This helps hide the

complexity of these heavy lifting tasks and frees the host (and the hence the designer) to focus

on application-specific tasks. Furthermore, both customers and programming houses do not

need to research and provide details (and sometimes example codes) for specific ECC or BBM

schemes. These are many times not easy to obtain and are IP protected. Examples of managed

NAND devices includes Solid State Drives (SSD), Universal Flash Storage (UFS), Secure

Digital (SD) cards, and Embedded Multimedia Card (eMMC) devices.

The focus of this paper is on eMMC devices. It begins with a brief overview of the eMMC device

architecture, followed by sections explaining different protocols, speed modes and write modes

supported by these devices. A section discusses the new specifications and “production state

awareness” feature introduced in recent JEDEC specifications version 5.0 and later. The paper

concludes with the top five tips programming centers and decision makers should consider

when purchasing high quality programmers for programming eMMC devices.

BPM Microsystems | www.bpmmicro.com 8

eMMC Architecture

Embedded Multimedia Card (eMMC) devices follow a standard prepared by JEDEC and the

MMC Association. This standard, widely known as JEDEC specs, defines the eMMC electrical

interface and its environment and handling [4].

Figure 1 provides an overview of the eMMC system and the interaction between the host and

device controller. The eMMC communication protocol may use up to 11-signal bus (clock,

command, data strobe, and 1, 4, or 8 data bus). [4]

Figure 1. eMMC System Overview [4]

BPM Microsystems | www.bpmmicro.com 9

Figure 2 provides an example of partitions and user data area configuration. Upon shipping from

factory, the eMMC device consists of a user data area to store data, two boot area partitions for

booting (Boot Area Partition 1 and Boot Area Partition 2) and Replay Protected Memory Block

Area Partition (RPMB) to manage data in an authenticated and replay protected manner. The

size of the boot area partitions and the RPMB areas are defined as multiple of 128 KB.

Figure 2. Example of partitions and user data area configuration [4]

To achieve high densities while maintaining a small footprint and lower cost per unit, NAND

flash can be built using multi-level cell (MLC) flash memory. In MLC, a memory cell can store

more than 1 bit. This normally creates negative effects on the chip lifetime since the risk of more

bit flips could occur and decrease the number of Program/Erase cycles before the cell fails [6].

Since the boot area partitions and RPMB area are designed to hold sensitive data, these are

shipped from factory in enhanced state, also known as single level cell (SLC). If needed, the

user data area can later be enhanced. Moreover, up to four General Purpose partitions can be

created, and the size and state of these areas can be adjusted by writing to a register called

Extended Device Specific Data (ECSD) register.

BPM Microsystems | www.bpmmicro.com 10

Bus Protocol

As described in the JEDEC specification [4], the communication between the host and the

device follows a message-based bus protocol. One of the tokens described below represents

each message:

● Command: a command token starts an operation and sends serially from the host to

device on the CMD line

● Response: the device sends a response token serially to the host as an answer to a

previously received command on the CMD line

● Data: the data lines transfer data from the device to the host or vice versa. The data bus

may be set to 1(DAT0), 4(DAT0-DAT3) or 8(DAT0-DAT7)

Each token is preceded by a start bit (‘0’) and succeeded by an end bit (‘1’). Cyclic redundancy

check (CRC) follows the data in each token.

Speed Mode Advancements

The industry has seen significant improvements in the data transfer speeds supported by eMMC

devices. Figure 3 summarizes a comparison of the advancements speed modes.

Single Data Rate (SDR)

Legacy eMMC devices support a 0-26 MHz clock speed with maximum data transfer of 26

MB/s. They use Single Data Rate (SDR) mode to transfer data. In this mode, a single bit can be

transferred on each data line per clock cycle. Later eMMC devices support a clock speed of 0-

52 MHz.

Dual Data Rate (DDR)

The 0-52 MHz eMMC devices supported the legacy SDR mode as well as a newer transfer

mode introduced by JEDEC version 4.4 called Dual Data Rate (DDR). DDR mode allows the

transfer of two bits on each data line per clock cycle, one per each clock edge. This helps

achieve a transfer rate of up to 104 MB/s. In this mode, two CRCs need to be sent after each

block of data, one for bytes with odd number and another for bytes with even number. This

totals 32 bytes, instead of 16 bytes in SDR mode, for 8 bit data bus.

BPM Microsystems | www.bpmmicro.com 11

HS200

JEDEC version 4.5 introduced support for even faster clock speeds of up to 200 MHz (high

speed HS200). The maximum transfer rate for this mode is 200 MB/s.

HS400

Most recently, JEDEC version 5.0 introduced a DDR version of the HS200, known as HS400.

The goal of HS400 mode is to achieve a maximum data transfer to 400 MB/s.

Figure 3. Speed Mode Advancements

It worth noting that the above speeds do not take into account the overhead of command

transfers and the time taken by the device to physically write a block of data to the internal

memory or prepare a block of data to be sent to the host during read operation.

Data Read/Write

The JEDEC specification defines different data read/write commands for use with eMMC.

BPM Microsystems | www.bpmmicro.com 12

● Single block read/write - the host reads/writes a single block after issuing a “single block

read/write command”

● Pre-defined multiple block read/write - the host sets the number of blocks to be

read/written followed by the multiple block read/write command

● Open-ended multiple block read/write - the host continues to read/write blocks of data

until it issues a stop transmission command

During the read operation, the device sends CRC after each 512 data bytes. In a similar

manner, the host sends the CRC after 512 data bytes. If the CRC is correct, then the device

sends back a positive CRC status “010b” to the host. Otherwise, it sends back a negative CRC

status “101b” and ignores the data sent by the host. Before writing new data to any sector, the

device erases the old data.

As described above, the CRC of the customer raw data file to be programmed into the device

needs to be calculated. One option is to reformat the data file by embedding the CRC values

after each sector. Most programmers have a tool that can perform this operation offline.

Production State Awareness

JEDEC version 5.0 introduces “Production State Awareness” to help avoid possible data

corruption during soldering. Activate the Production State Awareness by setting a field in the

extended CSD register before programming the part. Only a predefined part of the whole device

available space can be supported by this feature.

BPM Microsystems | www.bpmmicro.com 13

5 Tips When Programming eMMC

Exceptional products start with exceptional programming. This section outlines the top five

considerations manufacturers and programming centers need to look for that affect resource

utilization, net throughput, and quality of programming.

1. Use HS400 Mode for High Throughput

Make sure your device programmer supports HS400 mode. To achieve high throughput,

programmers need to support the highest possible speed mode currently supported by the

device. JEDEC recommends HS400 mode when programming eMMC devices to achieve

the highest possible programming speed. Don’t compensate for slower programming times

by buying more sockets. More sockets means higher purchasing costs, more time spent

teaching, and higher maintenance costs. Faster programming times allow for fewer

sockets, which creates a huge multiplier effect of time and resource savings from teaching

and programming to purchasing and maintenance.

2. Ensure Clean Signal Quality for High Yield

It is critical to follow programming specifications to ensure the quality of final product. One

of the signals that has crucial timing constraints in high-speed mode is the clock signal.

According to JEDEC, when programming eMMC in HS400 mode the minimum pulse width

must be 2.2 ns and the minimum slew rate must be 1.125 V/ns. These constraints must be

maintained to achieve the highest possible speed, even if a clock period of 5 ns is used.

Make sure all signals generated by your programmer follow the specification for the device.

As an example, the high accuracy of the clock generated by the programmer in Figure 4

helps achieve the target transfer at a rate of 2.5 ns per byte, which put it at the device

limits.

BPM Microsystems | www.bpmmicro.com 14

Figure 4. BPM 9th Gen Clock in HS400 Mode

3. Purchase Adaptable Socket Modules for Cost Savings

Find a partner who gives you the ability to use existing socket modules for new eMMC

programming instead of requiring the purchase of new socket modules. This future-thinking

partner will help you smartly manage your budget. Make sure socket modules that support

DDR mode also support HS400 mode, so you have high programming flexibility and keep

overall costs low.

4. Invest in Automated Programmers for High Volume

To achieve high volume production in a short amount of time, consider purchasing

automated programmers. High-density devices like eMMC take a longer time to program,

so investing in an automated programmer allows you to increase machine utilization and

maximize throughput. Look for an automated programmer equipped with a high accuracy

robotic arm and cameras to ensure both accurate and careful handling of thin eMMC

devices as well as other CSP devices. This will improve the speed and accuracy of

handling devices during the programming process. Some automated programmers are

equipped with 3D inspection systems and laser marking systems.

BPM Microsystems | www.bpmmicro.com 15

5. One Programmer To Rule Them All

Invest in a device programmer that supports eMMC devices as well as other types of

devices. This will quickly save you time and money. A programmer that supports a high-mix

of devices gives you the flexibility to program different devices on a single machine. This

reduces the machine idle time and setup time between different jobs, since there is no

need to swap programmers for different devices. In addition, there is a reduction in

maintenance and training time, since you only need to train staff on operating and

maintaining one machine. Finally, there are cost savings since one universal programmer

will be enough to support most, if not all, of your devices. Make the decision to add

additional programmers based on capacity, not device support limitations.

Summary

This paper shared knowledge about eMMC devices and programming best practices benefitting

both engineers as well as decision makers working in the industry of eMMC device

programming.

The paper briefly explained the basic device specification that all eMMC devices follow: such as

device architecture, protocols, speeds modes and read/write modes.

The paper concludes with the top five characteristics to look for when purchasing an efficient

eMMC programmer to maximize quality, throughput and cost savings:

1. Ensure your programmer supports the highest possible speed mode (HS400 at time of

writing this paper)

2. Ensure your programmer produces clean signal integrity

3. Ensure socket modules support DDR mode and HS400 mode

4. Invest in automated programmers to maximize volume

5. Ensure your programmer supports a high-mix of devices

BPM Microsystems | www.bpmmicro.com 16

BPM Microsystems | www.bpmmicro.com 17

References

[1] S. Aritome, Kawasaki, R. Shirota, G. Hemink, T. Endoh, F. Masuoka, “Reliability issues of

flash memory cells,” Proceedings of the IEEE (Volume: 81, Issue: 5, May 1993).

[2] Affeldt, R., Garrigue, J., “Formalization of error-correcting codes: from hamming to modern

coding theory.” In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 17–33. Springer,

Heidelberg (2015). doi:10.1007/978-3-319-22102-12 4.

[3] Priyanka P. Ankolekar, Roger Isaac, and Jonathan W. Bredow, “Independent bad block

management for mass storage flash memory arrays”, IEEE Transactions on Device and

Materials Reliability (Volume: 10, Issue: 1, March 2010).

[4] Jedec Solid state technology association, “Embedded Multi-Media Card (eMMC) Electrical

Standard (5.1),” [https://www.jedec.org/standards-documents/docs/jesd84-b51].

http://www.jedec.org/standards-documents/results/jesd84-b51, February 2015.

[5] Sandisk, “Design Considerations for SD™ Cards and e.MMC Products”,

[https://link.sandisk.com/content/dam/customer-

portal/en_us/external/public/cps/collaterals/white_paper/white_paper_design_considerations_v1

_0.pdf], 2015.

[6] D. Allred, G. Agarwal, “Software and hardware design challenges due to the dynamic raw

NAND market”, EE Times, 2011.

[7] STMicroelectronics, “Bad block management in NAND flash memories” EET Asia,

2014.

[8] Micron, “Bad Block Management in NAND Flash Memory” Technical note TN-29-59,

https://www.micron.com/~/media/documents/products/technical-note/nand-

flash/tn2959_bbm_in_nand_flash.pdf, 2011.

BPM Microsystems | www.bpmmicro.com 18

BPM Microsystems | www.bpmmicro.com 19

For More Information

For more information on this white paper or other device programming questions, please

contact info@bpmmmicro.com.

Copyright © 2017 BPM Microsystems. All Rights Reserved.

