
(19) United States
US 20090287969A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0287969 A1
White et al. (43) Pub. Date: Nov. 19, 2009

(54) ELECTRONIC APPARATUS AND BITERROR
RATE TOLERANCE METHOD FOR
PROGRAMMING NON-VOLATILE MEMORY
DEVICES

(75) Inventors: Brandon L. White, Cypress, TX
(US); Danny Tjandra, Houston,
TX (US)

Correspondence Address:
TOWNSEND AND TOWNSEND AND CREW,
LLP
TWO EMBARCADERO CENTER, EIGHTH
FLOOR
SAN FRANCISCO, CA 94111-3834 (US)

(73) Assignee: BPM Microsystems, Houston, TX
(US)

(21) Appl. No.: 12/423,140

(22) Filed: Apr. 14, 2009

Verify Request
- Vector Engine Enable

Address Decoder

311

312

MAN AREA
ERROR MIT
SPARE AREA
MAX ADDR
MAN AREA

SUB-MAIN
AREA MASK

303

ADDR
CONTROL E) COUNTER
REGISTERS

304

SPARE AREA
ERROR LIMIT

SEQUENCER

Related U.S. Application Data
(60) Provisional application No. 61/052,889, filed on May

13, 2008.
Publication Classification

(51) Int. Cl.
G06F II/07 (2006.01)

(52) U.S. Cl. 714/704: 714/E11.024
(57) ABSTRACT

The present invention provides an apparatus and method for
using a bit error rate tolerance (BERT) technique for high
speed programming of non-volatile electronic memory
devices. The device programmer is comprised of an embed
ded computer system and specialized electronic circuitry to
interface to the device to be programmed. According to one
aspect of the invention, the device programmer contains digi
tal registers to accumulate the number of incorrect data bits
encountered during the verification of the device program
ming operation. A field-programmable input to the device
programmer specifies the BERT to be allowed at precise
intervals within the device. Devices that are found to exceed
the specified BERT shall be rejected.

From Pin
Driver

From Data Memory
Interface

3O8

COMPARATOR

US 2009/0287969 A1 Nov. 19, 2009 Sheet 1 of 5 Patent Application Publication

S??u/n JeNWOd oSIWN

?, aun61-I

(LnO)

solº 3)

Z01,

70 ||

Oc SOH UOI/OL

wae

US 2009/0287969 A1 Nov. 19, 2009 Sheet 2 of 5 Patent Application Publication

S

Z ?un61-I

leOJuOO 9S UOI/

WWUUOI/O

CD
I -

US 2009/0287969 A1 Nov. 19, 2009 Sheet 3 of 5 Patent Application Publication

809

| 19

S? HELSI3OER-, TION_LNO O

Sng ueSAS jeOO

Patent Application Publication Nov. 19, 2009 Sheet 4 of 5 US 2009/0287969 A1

401

Symbol Legend (e.
Register operation

o New State Initializes all
Control Registers

Combinational Operation
o No New State

402

403

Reset:
• ErrFlag = FALSE
o ACC = 0
• AddrCounter = 0

Register operation
0 No New State

Decision
Point

418
Vector
Engine =

Addr = 1 Enable

407

AddrCounter F AddrCounter = ADDER1 = Calculate it of
AddrCounter + 1 O Mismatch BitS

416 Y 417 408

ACC - ACC +
ADDER 1

415

409

MaxAddr
< AddrCounter

p

N

LoopCounter = LoopCounter = 0
LoopCounter +1 ACC =0 Y 411

413 414 410
Y ErrFlag =

LoopSize
< LoopCounter

Figure 4

Patent Application Publication Nov. 19, 2009 Sheets of 5 US 2009/0287969 A1

501
Symbol Legend

Register operation (E)
• New State

Combinational Operation 502
"No New State Set:

• MaxAddr = MainAreaMaxAddr
Decision • MaxErr F MainArearror imit
Point

503

LoopSize = MaxAddr && SubMainAreaMask

504

NextMaxAddr N
2

Y
505

N SpareArea = 0

Y 506

Set:
MaxAddr = SpareAreaMaxAddr

• MaxErr = SpareArearrorLimit

507

LoopSize = MaxAddr

508

NextMaxAddr N
?

Y

Figure 5

US 2009/0287969 A1

ELECTRONIC APPARATUS AND BITERROR
RATE TOLERANCE METHOD FOR

PROGRAMMING NON-VOLATILE MEMORY
DEVICES

CROSS-REFERENCES TO RELATED
APPLICATIONS

0001. This application claims priority from U.S. Provi
sional Patent Application No. 61/052,889, filed May 13,
2008, entitled “ELECTRONIC APPARATUS AND BIT
ERRORRATE TOLERANCE METHOD FOR PROGRAM
MINO NON-VOLATILE MEMORY DEVICES. This
application is hereby incorporated by reference in its entirety
for all purposes.

BACKGROUND OF THE INVENTION

0002 1. Field of Invention
0003. The present invention relates to the field of auto
mated transfer of electronic data into non-volatile digital
memory devices. In particular, the present invention relates to
electronic systems and methods for detection of erroneous
data occurring in Such devices during data transfer.
0004 2. Description of the Related Art
0005. In the electronics manufacturing industry, it is often
desirable to transfer data into a non-volatile semiconductor
device. Such as flash memory, using special purpose program
ming machines known as device programmers. Employing
device programmers to handle this task is often necessary to
achieve an initial state in the device such that it may then be
assembled into a larger electronic system, known as an
embedded system. This pre-programming of an initial state
allows the manufactured system to achieve basic functional
ity for further programming of the device by other means,
usually as a function of the manufactured embedded system
itself. This practice may also extend to other areas related to
electronics manufacturing that include, but are not limited to,
research and development, and failure analysis.
0006. It is often practical to utilize the device programmer
to pre-program all intended data into the device during manu
facture as a cost reduction technique. Embedded systems may
have particular design attributes such as low power consump
tion combined with reduced performance processing units
that achieve less than maximal data transfer rates of the
memory device. Device programmers can often achieve
much more rapid transfer times which can increase the rate of
system manufacture thereby lowering the per-unit manufac
turing cost.
0007 Certain types of modern, large capacity, non-vola

tile memory devices, such as NAND Flash, exhibit reliability
errors in the data stored in the device. These errors manifestas
output data that contains unpredictable differences from the
original input data. The frequency of these errors increases
with the repeated erasure and programming of the cells inter
nal to the device. It is a burden of the system that interfaces to
the flash device to detect and correct such errors, where pos
sible.
0008 To improve the accuracy of the data transferred out
of a non-volatile memory device, e.g., a flash device, to a level
acceptable by the application of the system, error correction
code (ECC) algorithms are widely used. Such algorithms
compute code values in relation to the data to be stored in the
device. These code values are typically stored in the flash
device itself along with the original data. Upon transfer of

Nov. 19, 2009

data output from the flash device, the code data is output as
additional information. The system receiving the data from
the flash device makes use of a decoding algorithm that ulti
lizes the code to detect, and in most cases correct, incorrect
binary data states in the received transfer.
0009. A limitless number of practical implementations of
ECC techniques exist. There are various encoding and decod
ing algorithms, and each can be varied in numerous ways to
Suit particular requirements as will be understood to those
skilled in the art. The frequency and manner in which the code
values are arranged in relation to the original data presents yet
another vast mixture of possibilities. Additionally, Some sys
tems are known to combine multiple ECC implementation
techniques in a dynamic hybrid fashion (see, e.g., US Pat.
App. Pub. No. 20040083333A1, which is hereby incorpo
rated by reference).
00.10 ECC algorithms are designed in a manner such that
the decoding operation indicates the number of individual bit
errors present in the data transferred from the device, if any.
Furthermore, an additional computation can then be per
formed in the event of such bit errors so as to correct these
errors. Generally, ECC algorithms can correct Some lesser
number of errors than can be detected. For instance, a 4-bit
ECC algorithm may be able to detect the presence of 5 or
more invalid bits in a block of data, but is only capable of
precisely identifying and thus correcting 4 of the erroneous
bits. The integrity of the embedded system can be maintained
so long as the bit error rate (BER) for any block of data
transferred from the flash memory device does not exceed the
correction limits of the ECC algorithm used to encode that
data block.
0011 ECC algorithms require complex computations and
as Such incur latencies when the system accesses the data in
the device. Generally, the stronger the ECC algorithm in
terms of the number of bit correction ability, the more com
putational overhead is required. ECC algorithms may be
implemented as Software instructions for a processing unit, or
may be implemented in whole or in part on dedicated hard
ware logic circuitry to increase the performance of the com
putations.
0012. When pre-programming a NAND flash device by
way of a device programming machine, data corruption fail
ures must be detected. If these failures exceed the limits of the
target embedded system's ECC algorithm correction capabil
ity, then the device must be rejected and excluded from fur
ther assembly into the target system circuit.
0013. In the prior art, device programmers leveraged the
assumption that NAND flash devices would not yield bit
errors during manufacturing pre-programming due to the lack
of disturbance issues in new devices. While this certainly
remains true for Single Level Cell (SLC) NAND flash
devices, Multiple Level Cell (MLC) devices can and will in
fact experience program disturbance issues on the first and
Subsequent program operations that will lead to incorrect bit
states upon transfer of the data from the device.
0014 Applying conventional device programmer meth
ods to MLC NAND flash devices results in unsuccessful
yield, as nearly all devices would be rejected by the machine
upon detection of the erroneous data bits in the output.
0015 Implementing the ECC algorithm used by the
embedded system in the device programmer is an obvious but
inadequate solution. The computational overhead for these
algorithms is not suitable for the rates desired for electronics
manufacturing. Furthermore, the exact details of any particu

US 2009/0287969 A1

lar embedded system's ECC methods might be difficult or
impossible to obtain. Advanced ECC methods are often pro
prietary, with multiple parties involved and the license for
Such use untenable. Lastly, the cost to develop Such algo
rithms on a per-device, per-system basis is typically prohibi
tive.
0016. Therefore, a need exists for a device programming
machine with an improved method and apparatus for data
verification within a biterror rate tolerance threshold. That is,
what is desired is a method and apparatus for high-speed
pre-programming of MLC NAND Flash or other non-volatile
memory devices within the capabilities of any arbitrary ECC
algorithm without employing Such algorithms directly.

BRIEF SUMMARY

0017 Briefly, the present invention provides an apparatus
and method for using a bit error rate tolerance (BERT) tech
nique for high-speed programming of non-volatile electronic
memory devices. The device programmer, in certain aspects,
includes an embedded computer system and specialized elec
tronic circuitry to interface to the device to be programmed.
0018. According to one embodiment, a method for using a

bit error rate tolerance technique during high-speed program
ming of non-volatile memory devices is disclosed. The
method comprises receiving a tolerance value representing a
maximum number of bit errors that a memory region in a
non-volatile memory device can tolerate. Next, the method
analyzes a memory region of the non-volatile memory device
to find the number of bit errors contained in the memory
region of the device without running an error correcting code
algorithm. The method then compares the number of bit
errors found in the analyzed memory region of the non
volatile memory device to the tolerance value. Non-volatile
memory devices in which the number of bit errors found in
the analyzed memory region of the non-volatile memory
device is greater than the tolerance value are then rejected.
0019. According to another embodiment, a device pro
grammer apparatus for programming a non-volatile memory
device is disclosed. The apparatus comprises a means for
storing data to be transferred into memory of a non-volatile
memory device, a means for transferring data into memory of
the non-volatile memory device, a means for analyzing a
memory region of the non-volatile memory device that stores
the transferred data to find the number of bit errors contained
in the memory region without running an error correcting
code algorithm, a means for comparing the number of bit
errors found in the analyzed memory region of the non
Volatile memory device to a tolerance value representing a
maximum number of bit errors that a memory region in the
memory device can tolerate, and a means for rejecting the
non-volatile memory device if the number of bit errors found
in the analyzed memory region of the non-volatile memory
device is greater than the tolerance value.
0020. According to another embodiment, a computer
readable medium with computer-executable code is dis
closed. The computer-readable medium comprises code for
receiving a tolerance value representing a maximum number
of bit errors that a memory region in a non-volatile memory
device can tolerate, code for analyzing a memory region of
the non-volatile memory device to find the number of bit
errors contained in the memory region of the device without
running an error correcting code algorithm, code for compar
ing the number of bit errors found in the analyzed memory
region of the non-volatile memory device to the tolerance

Nov. 19, 2009

value, and code for rejecting the non-volatile memory device
if the number of bit errors found in the analyzed memory
region of the non-volatile memory device is greater than the
tolerance value.
0021. According to another embodiment of the invention,
a device programmer contains digital registers to accumulate
the number of incorrect data bits encountered during the
Verification of the device programming operation. A field
programmable input to the device programmer specifies a bit
error rate tolerance (BERT) to be allowed at precise intervals
within the device. Devices that are found to exceed the speci
fied BERT can be rejected and visually indicated as such by
the machine.
0022. According to another embodiment of the present
invention, a BERT input is set according to the ECC capabili
ties of the target system into which the device will be
assembled. A device programmer will only indicate Success
ful programming status for devices that contain a number of
biterrors equal to or less than the correction capabilities of the
target system's ECC algorithm. Devices failing to meet this
specification can be rejected and visually indicated as Such by
the machine to prevent further assembly of the device into the
target system, thereby avoiding the assembly of a non-func
tional target system.
0023. In another embodiment, an apparatus includes the
circuitry and implements simultaneous programming of mul
tiple quantities of devices. Each device's error statistics are
computed and retained discretely by the device programmer
circuitry in real-time, as is necessary to manage the random
distribution of possible error bits on individual devices.
0024. According to still another aspect of the present
invention, multiple BERT inputs may be specified by the
operator of the device programmer, as desired, to accommo
date varying tolerances for different memory regions of the
memory device.
0025. Further aspects and advantages of the present inven
tion shall become apparent upon reading and understanding
the following detailed descriptions of example embodiments
and studying the various figures of the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0026 FIG. 1 is a diagrammatic representation of the
device programmer embedded system electronic modules,
according to one embodiment.
0027 FIG. 2 is a diagrammatic representation of the digi
tallogic system implemented within the Field Programmable
Gate Array (FPGA) electronic module, according to an
embodiment.
0028 FIG.3 is a diagrammatic representation of the Verify
Engine sub-module containing the digital logic for the BERT
method within, in accordance with an embodiment.
0029 FIG. 4 is a process flow diagram, which illustrates
the BERT state-machine method according to one embodi
ment.

0030 FIG. 5 is a process flow diagram, which illustrates a
BERT reset state-machine method for detecting the transition
of the address into a new tolerance region of the device,
according to one embodiment.

DETAILED DESCRIPTION

0031 FIG. 1 shows an example of a device programming
embedded system 100 including various electronic modules.
At the center of the diagram is the Field Programmable Gate

US 2009/0287969 A1

Array (FPGA) 101 according to one embodiment. In the
embodiment illustrated in FIG.1, the FGPA is the module that
contains much of the logic that carries out the high-speed
pre-programming of devices. Surrounding the FPGA are
other modules that help the FPGA carry out its functions.
Among these modules are Data Memory 102, RAM 103, a
USB Controller 104 connected to a host PC, miscellaneous
power units 106, non-volatile storage 107, and a user inter
face module 108. The Device to be Programmed, or Device
Under Test (DUT), 105 is inserted into the device program
ming embedded system 100 by a user of the system through
an appropriate connection. It is through this connection that
the device programming embedded system 100 communi
cates with the DUT 105 and programs it.
0032 Some of the modules shown in the embodiment
illustrated in FIG. 1 are directly used to implement the pro
cess outlined below. For example, the FGPA 101 and the Data
Memory 102 are components used in implementing the
BERT technique according to the embodiment illustrated in
FIG. 1 as well as various other embodiments. Other compo
nents illustrated in FIG. 1, such as the user interface 108 and
non-volatile storage 107, can be used for configuration, Stor
age, and reporting purposes. It is possible that alternative
embodiments could include additional modules or exclude
Some of the modules shown here, depending on the particular
needs of the device programmer and the device to be pro
grammed.
0033 FIG. 2 shows a more detailed view of an FPGA 201
according to one embodiment. The FPGA201 in this diagram
may be the same as the FPGA 101 from FIG. 1. FIG. 2 also
shows how many of the modules illustrated in FIG. 1 connect
to the FPGA 201. For example, the RAM Interface 203, USB
Interface 205, Peripherals Interface 206, Data Memory Inter
face 202, and PIN Driver 207 all reside on the Local System
Memory and DMA Buses 212 and connect the FPGA 201 to
many of the external modules shown in FIG. 1. Of course, if
other devices are connected to the FPGA 201, then those
devices would also typically need the appropriate hardware,
interface, or other means for connecting the device to the
FPGA2O1.

0034. In FIG. 2, the Vector Engine 208 and the Verify
Engine 209 are the components of the FPGA that contain the
logic for programming the DUTs and Verifying the bits cop
ied to the DUTs. The Vector Engine handles the application of
waveform signals to the DUTS during programming and veri
fication, and the Verify Engine checks the output of the DUTs
for errors during verification after the initial programming is
complete. These engines can be implemented in Software,
hardware, or some combination of hardware and software.
While the embodiment shown in FIG. 2 shows these two
engines as distinct modules, alternative embodiments are
possible where the logic to be executed in these modules
actually reside within the same module of the FPGA.
0035. Within the Verify Engine 209, two sub-modules are
shown: Verify 210 and BERT 211. The Verify sub-module
210 contains the logic used to capture data output from the
DUTs and to verify its correctness against the Data Memory
102 via the Data Memory Interface 202. Detected verification
errors are fed into the BERT Sub-module 211. The BERT
sub-module 211 implements the techniques further discussed
in FIGS. 4 and 5.
0036 FIG. 3 shows many components that help imple
ment the logic of the BERT sub-module 211 in one embodi
ment. In the Control Registers 301, there are various registers

Nov. 19, 2009

that are useful for tracking the area of memory to be checked
with the BERT technique as well as storing the limits for the
acceptable number of bit errors in the DUT. Examples of how
registers 313-317 are used during the BERT process are
shown in FIGS. 4 and 5. There is also a Comparator 308 that
performs the actual bit comparisons between the bits
recorded in the memory of the DUT and a copy of the bits as
they were intended to be copied. Additional components that
can be used for carrying out this process. Such as a Sequencer
304, Address Decoder 302, ADDR Counter 303, Accumula
tor 307, and various other ADDER registers are also repre
sented in the diagram. All of these well-known components
are used to implement the logic behind the BERT technique.
One skilled in the art will recognize that different embodi
ments of these components may be implemented inhardware,
Software, or in other combinations.
0037 FIG. 3 also shows an example of how the BERT
Sub-module can be connected with various other components
in the device programmer. For instance, the Sequencer 304
reads signals from both the Verify Engine through Verify
Request line 311 and also from the Vector Engine in the
through the Vector Engine Enable line 312. Also, Error Flag
306 is accessed by the Verify Engine to see whether a DUT
has successfully passed inspection by the BERT technique.
The Comparator 308 also reads data from both the DUT via
the Pin Driver and from Data Memory via the Data Memory
Interface, and compares the two to detect any differences.
0038 FIG. 4 is a process flow diagram that illustrates one
embodiment of a BERT technique implemented in a state
machine to count the number of bit errors present on a device.
This example BERT state machine can be implemented on
hardware and software such as the example shown in FIG. 3.
0039. The process starts at step 401. At step 402, all of the
Control Registers 301 are initialized to the appropriate start
ing values for the process. These registers will typically
define the area of memory to be checked, any Sub-areas of
memory to be checked, the number of memory errors the
device can tolerate before the device is considered a failure,
and perhaps other useful data Such as mask data.
0040. In addition to initializing the Control Registers 301,
which should need to only be initialized once, there are other
data fields that must be initialized for each individual DUT to
be examined. This second batch of initialization is repre
sented in step 403. In the embodiment shown in FIG. 4,
ErrFlag is set to FALSE, ACC is set to 0, and AddrCounter is
also set to 0. These variables can be mapped to the registers
from FIG. 3. For example, ErrFlag can correspond to Error
Flag 306, ACC can correspond to Accumulator 307, and
AddrCounter can correspond to ADDR Counter 303. ErrFlag
is set when a memory region of the DUT contains more errors
than what the DUT can tolerate. ACC is used to track the
running total of errors encountered in a memory region of the
DUT. AddrCounter is used to track the address of memory
undergoing analysis by the BERT technique.
0041 At step 404 the sub-module implementing the
BERT state machine waits for the Vector Engine to give the
BERT state machine the clearance to begin its process. In this
embodiment, this is accomplished by having the BERT sub
module wait for the Vector Engine to set a flag to indicate that
the DUT is ready to have its memory checked for bit errors.
This can be signaled to the BERT state machine through the
Vector Engine Enable line 312, although other well-known
techniques can also be used to accomplish this task. Other
wise, the BERT state machine must remain in an idle state

US 2009/0287969 A1

during other operations on the DUT that do not involve BERT
Verification Such as erasure, blank checking, and program
ming.
0042. After the BERT state machine has verified that the
Vector Engine has given clearance for the BERT technique to
proceed, the BERT state machine synchronizes the ErrFlag.
This is shown at step 405. This is done because there may
have been a change in the proper value of the ErrFlag as a
result of operations conducted on the DUT while the BERT
state machine was waiting for the Vector Engine to set the
Enable flag in step 404. It is possible that the Vector Engine
could directly update the ErrFlag in the BERT state machine
because some other error occurred during programming that
renders the DUT a failure, but that may not always be the case.
Thus, the BERT state machine may need to check modules in
the Device Programmer to synchronize the ErrFlag to its
correct value at this point in the process.
0043. At step 406 the BERT state machine waits for the
Verify sub-module to request the BERT to run its bit error
analysis. Just as with the step 404, the BERT state machine
waits for clearance from the Verify sub-module before begin
ning its operation. This signal can be communicated to the
BERT state machine through the Verify Request 311 line or
any other Suitable technique. This waiting step prevents the
BERT state machine from initiating inspection of the bit
failures until the Verify sub-module has this information
available.

0044. After the BERT state machine has received the
clearance from the Verify sub-module, the process of check
ing the bits in the DUT begins at step 407. In step 407, the bits
in the DUT at the address represented by AddrCounter are
checked against the bits from the corresponding address in
Data Memory in order to count how many bits are mis
matched. This analysis can be done by the Comparator 308.
There are many possible ways that this analysis can be con
ducted. For example, the bits from the DUT and the bits from
Data Memory could be combined through a bitwise XOR
operation. The number of bits in the output of this operation
set to “1” could then be totaled to achieve the total number of
mismatched bits in this data segment. One skilled in the art
will recognize that many other suitable methods for calculat
ing the number of mismatched bits are available and can be
implemented in the alternative. In the present embodiment,
the total number of mismatched bits from this comparison is
stored in register ADDER1309.
0045. At step 408 the value stored in ADDER1309 is
combined with the value of the ACC, which updates the
running total of mismatched bits found in the DUT.
0046. At step 409, the value of the ACC is then compared
with the MaxErr, which is set to either register 313 or 314 in
this embodiment depending upon the tolerance region of the
DUT being verified at that particular point in time. If the
number of errors recorded in the ACC is greater than MaxErr,
then the bit in ErrFlag corresponding to the tolerance region
is set to TRUE in step 410. Otherwise, ErrFlag is not modified
and processing of the DUT continues through step 411.
0047. The value of MaxErr depends on the configuration
of the BERT analysis being conducted on the DUT. In some
instances there may be a limit not only on the number of errors
contained in the DUT's memory as a whole, but also on the
number of errors contained in a given area of memory. This
given area of memory can be referred to as a tolerance region.
For example, ECC coding may be applied to the DUT's
memory in pages, where each page has a maximum number

Nov. 19, 2009

of errors that can be corrected through the ECC algorithm
applied to the data. MaxErr might have one value for data
segment of memory and a different value for the spare-area
segment of memory. FIG.5, discussed further below, gives an
example of how the BERT state-machine can move through
different tolerance regions in the DUT and apply different
values for system parameters such as SpareAreaLimit 313
and MainAreaLimit 314.

0048. After MaxErr has been compared to the number of
errors detected in step 409 the BERT state machine runs
through a number of steps to check its progress through the
address space of the DUT. In step 412 LoopCounter is com
pared with LoopSize. This check allows this embodiment to
check the number of bit errors present in a sub-segment of
memory. For example, any errors present in one Sub-segment
of memory must not contribute to the error rate of another
Sub-segment and so the memory area to be analyzed in the
DUT has to be broken up into smaller pieces. If the segment
of memory has been fully checked for bit errors, then Loop
Size will be less than LoopCounter, and the LoopCounter and
ACC will be reset to 0 as in step 414. Otherwise, LoopCounter
will be incremented as shown in step 413. The loop size can
be set to be the same as the Max Addr size so that in effect the
entire memory space to be checked is considered to be one
LoopSize.
0049. In step 415 a check similar to the check at step 412

is conducted. The difference is that the check at step 415 is
conducted on the progress made through the entire memory
space rather than just a loop segment. If the AddrCounter
shows that the BERT state machine has checked all of the
addresses up to and including the Max Addr, then the
AddrCounter is reset. Otherwise, the AddrCounter is incre
mented so that the next error region of the DUT can be
inspected.
0050. At step 418, NextMax Addr is set to 1. This variable

is re-initialized to prepare the BERT state machine to process
the next tolerance region by Subsequently causing MaxErr to
be set to the next region's error rate limit and Max Addr to be
set to the next region's highest address offset. As shown in
FIG. 5, other operations in the Verify Engine may take place
before the BERT state machine checks the next memory
segment of the DUT for bit errors.
0051. At step 419, the Vector Engine is checked again to
see if it is set to "Enable.” This is similar to the check done at
step 404. If it is detected that the Vector Engine has set the line
to "Enable, then the state machine returns to step 406 and
processing continues from that point in the state machine.
Otherwise, the BERT processing is complete and the state
machine, completes until signaled by the CPU to start again.
0052. As is demonstrated in steps represented in FIG. 4,
none of the individual operations that make up the BERT
process are complicated or time consuming processes. This
allows the entire process to take place very rapidly. The
amount of time and resources spent conducting this analysis
is a function of the number of bits to be checked, not any ECC
algorithm implemented. For instance, with well-designed
pipelining each DUT address can be verified with BERT per
system clock.
0053. It is possible that other optimizations could be
implemented in the steps shown in FIG. 4. For example, once
it is determined that ErrFlag is going to be set to TRUE, it may
be possible to cease further processing on the DUT since the

US 2009/0287969 A1

DUT will be rejected. Other optimizations may also be appro
priate based on the goals of the given embodiment of the
invention.
0054 FIG. 5 shows an example of a BERT reset state
machine method for detecting the transition into a new toler
ance region of the device according to one embodiment. A
tolerance region is a region of memory that is grouped
together for BERT purposes. For example, a tolerance region
could be an area of memory that is grouped together for ECC
purposes and each tolerance region in memory may have an
independent bit failure tolerance limit.
0055. In a given tolerance region, there are potentially two
or more potential sub-areas. In the embodiment illustrated in
FIG. 5, there are two different sub-areas that are each checked
for bit errors individually. The two sub-areas represented in
FIG. 5 are a Main Area and a Spare Area. An example of how
these two areas can be used is related to ECC. The Main Area
could hold the data related to the actual content or data to be
used by a later application. The Spare Area could hold the
error-correcting data used to correct any bits that may have
been improperly transferred to the DUT. It is clear that the
number of sub-areas can be custom tailored to fit the needs of
a given application, and the process in FIG. 5 can be easily
extended to accommodate additional Sub-areas.
0056. In the example state machine shown in FIG. 5, the
process begins at step 501. In step 502, the state machine sets
the Max Addrand the MaxErr to the values appropriate for the
region about to be examined. Max Addr defines the top
address in the area of memory to be checked. MaxErr defines
the maximum number of bit errors that are acceptable in the
memory region to be checked. The values for these variables
can vary for different DUTs and different sets of data to be
transferred into a DUT.
0057. At step 503, LoopSize is calculated. As discussed

earlier, LoopSize is used by the BERT state machine to break
up the memory area to be checked into chunks. In this
instance, LoopSize is determined by applying SubMainAr
eaMask to Max Addr through a “&& operation. There are
many other possible ways to calculated LoopSize.
0058. Once the steps at 502 and 503 are completed, the
state machine then waits for NextMax Addr to be set to TRUE
or 1. The BERT state machine checks the main memory area
for bit errors while the state machine waits in this loop. One
skilled in the art will recognize that other triggering or sig
naling mechanisms can be used at this step as well.
0059. After the state machine recognizes that the main
address has been fully checked for bit errors, the state
machine checks to see if there is any spare area that needs to
be checked. If there is no spare memory area to be checked,
then the State Machine returns to its initial state and waits for
the next DUT to be checked. If there is a spare area to be
checked, then the process outlined in steps 506,507, and 508
are executed. These steps are very similar to steps 502, 503,
and 504, but use different values for Max Addr, MaxErr, and
LoopSize. In the example embodiment shown, Max Addr is
set to SpareAreaMax Addr, MaxErr is set to SpareAreaError
Limitm and LoopSize is set to Max Addr. Since LoopSize is
set to be the same as Max Addr in this example, then only one
“loop' needs to be made through the Spare Area since the size
of the loop is the same size as the entire Spare Area. Once
these variables are set, the state machine again waits for the
memory area to be checked for bit errors. After the bit error
check is complete, the state machine returns to its initial state
to wait for the next DUT to be checked.

Nov. 19, 2009

0060 Any software components or functions described
herein may be implemented as software code to be executed
by a processor using any Suitable computer language Such as,
for example, Java, C++ or Perl using, for example, conven
tional or object-oriented techniques. The Software code may
be stored as a series of instructions, or commands on a com
puter readable medium, Such as a random access memory
(RAM), a read only memory (ROM), a magnetic medium
Such as a hard-drive or a floppy disk, or an optical medium
such as a CD-ROM. Any such computer readable medium
may reside on or within a single computational apparatus, and
may be present on or within different computational appara
tuses within a system or network.
0061 The modules, sub-modules, and other components
referenced in this description can be implemented in a variety
of ways. The selection of particular means for implementing
the above described features is illustrative but not restrictive.
Many variations of the invention will become apparent to
those skilled in the art upon review of the disclosure. For
example, while many pieces of data used by the invention are
represented as being Stored in registers, there is no reason why
the same pieces of data could not be stored in RAM or in other
locations. The scope of the invention should, therefore, be
determined not with reference to the above description, but
instead should be determined with reference to the pending
claims along with their full scope or equivalents.
0062. A recitation of “a”, “an or “the is intended to mean
“one or more unless specifically indicated to the contrary.
0063 All patents, patent applications, publications, and
descriptions mentioned above are herein incorporated by ref
erence in their entirety for all purposes. None is admitted to be
prior art.
What is claimed is:
1. A method for using a bit error rate tolerance technique

during high-speed programming of non-volatile memory
devices, the method comprising:

receiving a tolerance value representing a maximum num
ber of bit errors that a memory region in a non-volatile
memory device can tolerate;

analyzing a memory region of the non-volatile memory
device to find the number of bit errors contained in the
memory region of the device without running an error
correcting code algorithm;

comparing the number of bit errors found in the analyzed
memory region of the non-volatile memory device to the
tolerance value; and

rejecting the non-volatile memory device if the number of
bit errors found in the analyzed memory region of the
non-volatile memory device is greater than the tolerance
value.

2. The method of claim 1 wherein the tolerance value is
determined using a function of an error correcting code algo
rithm used to encode the data transferred into the non-volatile
memory device.

3. The method of claim 1 wherein the memory region is one
of a plurality of memory regions in the non-volatile memory
device, wherein the steps of analyzing, comparing, and reject
ing are repeated for each memory region of the device.

4. The method of claim 1 wherein the step of analyzing a
memory region comprises using a bitwise XOR operation to
find the number of bit errors contained in the memory region
of the device.

5. The method of claim 1 wherein the memory region
comprises a main memory area and a spare memory area,

US 2009/0287969 A1

wherein the analyzed memory region is the main memory
area, the method of claim 1 further comprising:

receiving a second tolerance value representing a maxi
mum number of bit errors that a spare memory area in
the non-volatile memory device can tolerate;

analyzing the spare memory area of the non-volatile
memory device to find the number of biterrors contained
in the spare memory area of the device;

comparing the number of bit errors found in the analyzed
spare memory area of the non-volatile memory device to
the second tolerance value; and

rejecting the non-volatile memory device if the number of
bit errors found in the spare memory area of the non
Volatile memory device is greater than the second toler
ance value.

6. The method of claim 5 wherein the tolerance value and
the second tolerance value are not the same value.

7. The method of claim 5 wherein the spare memory area
stores error correcting data that can be used to correct bit
errors in the main memory area.

8. The method of claim 1 further comprising:
analyzing a memory region of a second non-volatile
memory device to find the number of biterrors contained
in the memory region of the second device without run
ning an error correcting code algorithm;

comparing the number of bit errors found in the analyzed
memory region of the second non-volatile memory
device to the tolerance value; and

rejecting the second non-volatile memory device if the
number of bit errors found in the analyzed memory
region of the second non-volatile memory device is
greater than the tolerance value;

wherein the non-volatile memory device and the second
non-volatile memory device are analyzed, compared,
and rejected Substantially at the same time.

9. The method of claim 1 wherein the non-volatile memory
device is a multiple level cell NAND flash device.

10. The method of claim 1 further comprising:
assembling the non-volatile memory device into an embed

ded system if the device is not rejected.
11. A device programmer apparatus for programming a

non-volatile memory device, the apparatus comprising:
means for storing data to be transferred into memory of a

non-volatile memory device;
means for transferring data into memory of the non-vola

tile memory device:
means for analyzing a memory region of the non-volatile
memory device that stores the transferred data to find the
number of bit errors contained in the memory region
without running an error correcting code algorithm;

means for comparing the number of bit errors found in the
analyzed memory region of the non-volatile memory
device to a tolerance value representing a maximum
number of bit errors that a memory region in the memory
device can tolerate; and

means for rejecting the non-volatile memory device if the
number of bit errors found in the analyzed memory
region of the non-volatile memory device is greater than
the tolerance value.

12. The device programmer apparatus of claim 11 wherein
the tolerance value is determined using a function of an error
correcting code algorithm used to encode the data transferred
into the non-volatile memory device.

Nov. 19, 2009

13. The device programmer apparatus of claim 11 wherein
the memory region is one of a plurality of memory regions in
the non-volatile memory device, wherein the means for trans
ferring, means for analyzing, and means for comparing are
each adapted to operate against each memory area in the
non-volatile memory device,

14. The device programmer apparatus of claim 11 wherein
the means for analyzing a memory region is adapted to use a
bitwise XOR operation to find the number of bit errors con
tained in the memory region of the device.

15. The device programmer apparatus of claim 11 wherein
the memory region comprises a main memory area and a
spare memory area, wherein the analyzed memory region is
the main memory area, the device programmer apparatus of
claim 11 further comprising:
means for selecting a second tolerance value representing a
maximum number of bit errors that a spare memory area
in the non-volatile memory device can tolerate;

means for analyzing the spare memory area of the non
volatile memory device to find the number of bit errors
contained in the spare memory area of the device with
out running an error correcting code algorithm;

means for comparing the number of bit errors found in the
analyzed spare memory area of the non-volatile memory
device to the second tolerance value; and

means for rejecting the non-volatile memory device if the
number of bit errors found in the spare memory area of
the non-volatile memory device is greater than the sec
ond tolerance value.

16. The device programmer apparatus of claim 15 wherein
the tolerance value and the second tolerance value are not the
same value.

17. The device programmer apparatus of claim 15 wherein
the spare memory area stores error correcting data that can be
used to correct bit errors in the main memory area.

18. The device programmer apparatus of claim 11 wherein
the non-volatile memory device is a multiple level cell NAND
flash device.

19. The device programmer apparatus of claim 11 wherein
the non-volatile memory device is later assembled into a
larger embedded system.

20. The device programmer apparatus of claim 11 wherein
the means for storing data, means for transferring data, means
for analyzing a memory region, means for comparing the
number of bit errors, and means for rejecting the non-volatile
device are each adapted to operate on multiple non-volatile
devices Substantially at the same time.

21. A computer readable medium with computer-execut
able code comprising:

code for receiving a tolerance value representing a maxi
mum number of bit errors that a memory region in a
non-volatile memory device can tolerate;

code for analyzing a memory region of the non-volatile
memory device to find the number of biterrors contained
in the memory region of the device without running an
error correcting code algorithm;

code for comparing the number of bit errors found in the
analyzed memory region of the non-volatile memory
device to the tolerance value; and

code for rejecting the non-volatile memory device if the
number of bit errors found in the analyzed memory
region of the non-volatile memory device is greater than
the tolerance value.

