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(57) ABSTRACT 

The present invention provides an apparatus and method for 
using a bit error rate tolerance (BERT) technique for high 
speed programming of non-volatile electronic memory 
devices. The device programmer is comprised of an embed 
ded computer system and specialized electronic circuitry to 
interface to the device to be programmed. According to one 
aspect of the invention, the device programmer contains digi 
tal registers to accumulate the number of incorrect data bits 
encountered during the verification of the device program 
ming operation. A field-programmable input to the device 
programmer specifies the BERT to be allowed at precise 
intervals within the device. Devices that are found to exceed 
the specified BERT shall be rejected. 
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ELECTRONIC APPARATUS AND BITERROR 
RATE TOLERANCE METHOD FOR 

PROGRAMMING NON-VOLATILE MEMORY 
DEVICES 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

0001. This application claims priority from U.S. Provi 
sional Patent Application No. 61/052,889, filed May 13, 
2008, entitled “ELECTRONIC APPARATUS AND BIT 
ERRORRATE TOLERANCE METHOD FOR PROGRAM 
MINO NON-VOLATILE MEMORY DEVICES. This 
application is hereby incorporated by reference in its entirety 
for all purposes. 

BACKGROUND OF THE INVENTION 

0002 1. Field of Invention 
0003. The present invention relates to the field of auto 
mated transfer of electronic data into non-volatile digital 
memory devices. In particular, the present invention relates to 
electronic systems and methods for detection of erroneous 
data occurring in Such devices during data transfer. 
0004 2. Description of the Related Art 
0005. In the electronics manufacturing industry, it is often 
desirable to transfer data into a non-volatile semiconductor 
device. Such as flash memory, using special purpose program 
ming machines known as device programmers. Employing 
device programmers to handle this task is often necessary to 
achieve an initial state in the device such that it may then be 
assembled into a larger electronic system, known as an 
embedded system. This pre-programming of an initial state 
allows the manufactured system to achieve basic functional 
ity for further programming of the device by other means, 
usually as a function of the manufactured embedded system 
itself. This practice may also extend to other areas related to 
electronics manufacturing that include, but are not limited to, 
research and development, and failure analysis. 
0006. It is often practical to utilize the device programmer 
to pre-program all intended data into the device during manu 
facture as a cost reduction technique. Embedded systems may 
have particular design attributes such as low power consump 
tion combined with reduced performance processing units 
that achieve less than maximal data transfer rates of the 
memory device. Device programmers can often achieve 
much more rapid transfer times which can increase the rate of 
system manufacture thereby lowering the per-unit manufac 
turing cost. 
0007 Certain types of modern, large capacity, non-vola 

tile memory devices, such as NAND Flash, exhibit reliability 
errors in the data stored in the device. These errors manifestas 
output data that contains unpredictable differences from the 
original input data. The frequency of these errors increases 
with the repeated erasure and programming of the cells inter 
nal to the device. It is a burden of the system that interfaces to 
the flash device to detect and correct such errors, where pos 
sible. 
0008 To improve the accuracy of the data transferred out 
of a non-volatile memory device, e.g., a flash device, to a level 
acceptable by the application of the system, error correction 
code (ECC) algorithms are widely used. Such algorithms 
compute code values in relation to the data to be stored in the 
device. These code values are typically stored in the flash 
device itself along with the original data. Upon transfer of 
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data output from the flash device, the code data is output as 
additional information. The system receiving the data from 
the flash device makes use of a decoding algorithm that ulti 
lizes the code to detect, and in most cases correct, incorrect 
binary data states in the received transfer. 
0009. A limitless number of practical implementations of 
ECC techniques exist. There are various encoding and decod 
ing algorithms, and each can be varied in numerous ways to 
Suit particular requirements as will be understood to those 
skilled in the art. The frequency and manner in which the code 
values are arranged in relation to the original data presents yet 
another vast mixture of possibilities. Additionally, Some sys 
tems are known to combine multiple ECC implementation 
techniques in a dynamic hybrid fashion (see, e.g., US Pat. 
App. Pub. No. 20040083333A1, which is hereby incorpo 
rated by reference). 
00.10 ECC algorithms are designed in a manner such that 
the decoding operation indicates the number of individual bit 
errors present in the data transferred from the device, if any. 
Furthermore, an additional computation can then be per 
formed in the event of such bit errors so as to correct these 
errors. Generally, ECC algorithms can correct Some lesser 
number of errors than can be detected. For instance, a 4-bit 
ECC algorithm may be able to detect the presence of 5 or 
more invalid bits in a block of data, but is only capable of 
precisely identifying and thus correcting 4 of the erroneous 
bits. The integrity of the embedded system can be maintained 
so long as the bit error rate (BER) for any block of data 
transferred from the flash memory device does not exceed the 
correction limits of the ECC algorithm used to encode that 
data block. 
0011 ECC algorithms require complex computations and 
as Such incur latencies when the system accesses the data in 
the device. Generally, the stronger the ECC algorithm in 
terms of the number of bit correction ability, the more com 
putational overhead is required. ECC algorithms may be 
implemented as Software instructions for a processing unit, or 
may be implemented in whole or in part on dedicated hard 
ware logic circuitry to increase the performance of the com 
putations. 
0012. When pre-programming a NAND flash device by 
way of a device programming machine, data corruption fail 
ures must be detected. If these failures exceed the limits of the 
target embedded system's ECC algorithm correction capabil 
ity, then the device must be rejected and excluded from fur 
ther assembly into the target system circuit. 
0013. In the prior art, device programmers leveraged the 
assumption that NAND flash devices would not yield bit 
errors during manufacturing pre-programming due to the lack 
of disturbance issues in new devices. While this certainly 
remains true for Single Level Cell (SLC) NAND flash 
devices, Multiple Level Cell (MLC) devices can and will in 
fact experience program disturbance issues on the first and 
Subsequent program operations that will lead to incorrect bit 
states upon transfer of the data from the device. 
0014 Applying conventional device programmer meth 
ods to MLC NAND flash devices results in unsuccessful 
yield, as nearly all devices would be rejected by the machine 
upon detection of the erroneous data bits in the output. 
0015 Implementing the ECC algorithm used by the 
embedded system in the device programmer is an obvious but 
inadequate solution. The computational overhead for these 
algorithms is not suitable for the rates desired for electronics 
manufacturing. Furthermore, the exact details of any particu 
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lar embedded system's ECC methods might be difficult or 
impossible to obtain. Advanced ECC methods are often pro 
prietary, with multiple parties involved and the license for 
Such use untenable. Lastly, the cost to develop Such algo 
rithms on a per-device, per-system basis is typically prohibi 
tive. 
0016. Therefore, a need exists for a device programming 
machine with an improved method and apparatus for data 
verification within a biterror rate tolerance threshold. That is, 
what is desired is a method and apparatus for high-speed 
pre-programming of MLC NAND Flash or other non-volatile 
memory devices within the capabilities of any arbitrary ECC 
algorithm without employing Such algorithms directly. 

BRIEF SUMMARY 

0017 Briefly, the present invention provides an apparatus 
and method for using a bit error rate tolerance (BERT) tech 
nique for high-speed programming of non-volatile electronic 
memory devices. The device programmer, in certain aspects, 
includes an embedded computer system and specialized elec 
tronic circuitry to interface to the device to be programmed. 
0018. According to one embodiment, a method for using a 

bit error rate tolerance technique during high-speed program 
ming of non-volatile memory devices is disclosed. The 
method comprises receiving a tolerance value representing a 
maximum number of bit errors that a memory region in a 
non-volatile memory device can tolerate. Next, the method 
analyzes a memory region of the non-volatile memory device 
to find the number of bit errors contained in the memory 
region of the device without running an error correcting code 
algorithm. The method then compares the number of bit 
errors found in the analyzed memory region of the non 
volatile memory device to the tolerance value. Non-volatile 
memory devices in which the number of bit errors found in 
the analyzed memory region of the non-volatile memory 
device is greater than the tolerance value are then rejected. 
0019. According to another embodiment, a device pro 
grammer apparatus for programming a non-volatile memory 
device is disclosed. The apparatus comprises a means for 
storing data to be transferred into memory of a non-volatile 
memory device, a means for transferring data into memory of 
the non-volatile memory device, a means for analyzing a 
memory region of the non-volatile memory device that stores 
the transferred data to find the number of bit errors contained 
in the memory region without running an error correcting 
code algorithm, a means for comparing the number of bit 
errors found in the analyzed memory region of the non 
Volatile memory device to a tolerance value representing a 
maximum number of bit errors that a memory region in the 
memory device can tolerate, and a means for rejecting the 
non-volatile memory device if the number of bit errors found 
in the analyzed memory region of the non-volatile memory 
device is greater than the tolerance value. 
0020. According to another embodiment, a computer 
readable medium with computer-executable code is dis 
closed. The computer-readable medium comprises code for 
receiving a tolerance value representing a maximum number 
of bit errors that a memory region in a non-volatile memory 
device can tolerate, code for analyzing a memory region of 
the non-volatile memory device to find the number of bit 
errors contained in the memory region of the device without 
running an error correcting code algorithm, code for compar 
ing the number of bit errors found in the analyzed memory 
region of the non-volatile memory device to the tolerance 
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value, and code for rejecting the non-volatile memory device 
if the number of bit errors found in the analyzed memory 
region of the non-volatile memory device is greater than the 
tolerance value. 
0021. According to another embodiment of the invention, 
a device programmer contains digital registers to accumulate 
the number of incorrect data bits encountered during the 
Verification of the device programming operation. A field 
programmable input to the device programmer specifies a bit 
error rate tolerance (BERT) to be allowed at precise intervals 
within the device. Devices that are found to exceed the speci 
fied BERT can be rejected and visually indicated as such by 
the machine. 
0022. According to another embodiment of the present 
invention, a BERT input is set according to the ECC capabili 
ties of the target system into which the device will be 
assembled. A device programmer will only indicate Success 
ful programming status for devices that contain a number of 
biterrors equal to or less than the correction capabilities of the 
target system's ECC algorithm. Devices failing to meet this 
specification can be rejected and visually indicated as Such by 
the machine to prevent further assembly of the device into the 
target system, thereby avoiding the assembly of a non-func 
tional target system. 
0023. In another embodiment, an apparatus includes the 
circuitry and implements simultaneous programming of mul 
tiple quantities of devices. Each device's error statistics are 
computed and retained discretely by the device programmer 
circuitry in real-time, as is necessary to manage the random 
distribution of possible error bits on individual devices. 
0024. According to still another aspect of the present 
invention, multiple BERT inputs may be specified by the 
operator of the device programmer, as desired, to accommo 
date varying tolerances for different memory regions of the 
memory device. 
0025. Further aspects and advantages of the present inven 
tion shall become apparent upon reading and understanding 
the following detailed descriptions of example embodiments 
and studying the various figures of the drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0026 FIG. 1 is a diagrammatic representation of the 
device programmer embedded system electronic modules, 
according to one embodiment. 
0027 FIG. 2 is a diagrammatic representation of the digi 
tallogic system implemented within the Field Programmable 
Gate Array (FPGA) electronic module, according to an 
embodiment. 
0028 FIG.3 is a diagrammatic representation of the Verify 
Engine sub-module containing the digital logic for the BERT 
method within, in accordance with an embodiment. 
0029 FIG. 4 is a process flow diagram, which illustrates 
the BERT state-machine method according to one embodi 
ment. 

0030 FIG. 5 is a process flow diagram, which illustrates a 
BERT reset state-machine method for detecting the transition 
of the address into a new tolerance region of the device, 
according to one embodiment. 

DETAILED DESCRIPTION 

0031 FIG. 1 shows an example of a device programming 
embedded system 100 including various electronic modules. 
At the center of the diagram is the Field Programmable Gate 



US 2009/0287969 A1 

Array (FPGA) 101 according to one embodiment. In the 
embodiment illustrated in FIG.1, the FGPA is the module that 
contains much of the logic that carries out the high-speed 
pre-programming of devices. Surrounding the FPGA are 
other modules that help the FPGA carry out its functions. 
Among these modules are Data Memory 102, RAM 103, a 
USB Controller 104 connected to a host PC, miscellaneous 
power units 106, non-volatile storage 107, and a user inter 
face module 108. The Device to be Programmed, or Device 
Under Test (DUT), 105 is inserted into the device program 
ming embedded system 100 by a user of the system through 
an appropriate connection. It is through this connection that 
the device programming embedded system 100 communi 
cates with the DUT 105 and programs it. 
0032 Some of the modules shown in the embodiment 
illustrated in FIG. 1 are directly used to implement the pro 
cess outlined below. For example, the FGPA 101 and the Data 
Memory 102 are components used in implementing the 
BERT technique according to the embodiment illustrated in 
FIG. 1 as well as various other embodiments. Other compo 
nents illustrated in FIG. 1, such as the user interface 108 and 
non-volatile storage 107, can be used for configuration, Stor 
age, and reporting purposes. It is possible that alternative 
embodiments could include additional modules or exclude 
Some of the modules shown here, depending on the particular 
needs of the device programmer and the device to be pro 
grammed. 
0033 FIG. 2 shows a more detailed view of an FPGA 201 
according to one embodiment. The FPGA201 in this diagram 
may be the same as the FPGA 101 from FIG. 1. FIG. 2 also 
shows how many of the modules illustrated in FIG. 1 connect 
to the FPGA 201. For example, the RAM Interface 203, USB 
Interface 205, Peripherals Interface 206, Data Memory Inter 
face 202, and PIN Driver 207 all reside on the Local System 
Memory and DMA Buses 212 and connect the FPGA 201 to 
many of the external modules shown in FIG. 1. Of course, if 
other devices are connected to the FPGA 201, then those 
devices would also typically need the appropriate hardware, 
interface, or other means for connecting the device to the 
FPGA2O1. 

0034. In FIG. 2, the Vector Engine 208 and the Verify 
Engine 209 are the components of the FPGA that contain the 
logic for programming the DUTs and Verifying the bits cop 
ied to the DUTs. The Vector Engine handles the application of 
waveform signals to the DUTS during programming and veri 
fication, and the Verify Engine checks the output of the DUTs 
for errors during verification after the initial programming is 
complete. These engines can be implemented in Software, 
hardware, or some combination of hardware and software. 
While the embodiment shown in FIG. 2 shows these two 
engines as distinct modules, alternative embodiments are 
possible where the logic to be executed in these modules 
actually reside within the same module of the FPGA. 
0035. Within the Verify Engine 209, two sub-modules are 
shown: Verify 210 and BERT 211. The Verify sub-module 
210 contains the logic used to capture data output from the 
DUTs and to verify its correctness against the Data Memory 
102 via the Data Memory Interface 202. Detected verification 
errors are fed into the BERT Sub-module 211. The BERT 
sub-module 211 implements the techniques further discussed 
in FIGS. 4 and 5. 
0036 FIG. 3 shows many components that help imple 
ment the logic of the BERT sub-module 211 in one embodi 
ment. In the Control Registers 301, there are various registers 
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that are useful for tracking the area of memory to be checked 
with the BERT technique as well as storing the limits for the 
acceptable number of bit errors in the DUT. Examples of how 
registers 313-317 are used during the BERT process are 
shown in FIGS. 4 and 5. There is also a Comparator 308 that 
performs the actual bit comparisons between the bits 
recorded in the memory of the DUT and a copy of the bits as 
they were intended to be copied. Additional components that 
can be used for carrying out this process. Such as a Sequencer 
304, Address Decoder 302, ADDR Counter 303, Accumula 
tor 307, and various other ADDER registers are also repre 
sented in the diagram. All of these well-known components 
are used to implement the logic behind the BERT technique. 
One skilled in the art will recognize that different embodi 
ments of these components may be implemented inhardware, 
Software, or in other combinations. 
0037 FIG. 3 also shows an example of how the BERT 
Sub-module can be connected with various other components 
in the device programmer. For instance, the Sequencer 304 
reads signals from both the Verify Engine through Verify 
Request line 311 and also from the Vector Engine in the 
through the Vector Engine Enable line 312. Also, Error Flag 
306 is accessed by the Verify Engine to see whether a DUT 
has successfully passed inspection by the BERT technique. 
The Comparator 308 also reads data from both the DUT via 
the Pin Driver and from Data Memory via the Data Memory 
Interface, and compares the two to detect any differences. 
0038 FIG. 4 is a process flow diagram that illustrates one 
embodiment of a BERT technique implemented in a state 
machine to count the number of bit errors present on a device. 
This example BERT state machine can be implemented on 
hardware and software such as the example shown in FIG. 3. 
0039. The process starts at step 401. At step 402, all of the 
Control Registers 301 are initialized to the appropriate start 
ing values for the process. These registers will typically 
define the area of memory to be checked, any Sub-areas of 
memory to be checked, the number of memory errors the 
device can tolerate before the device is considered a failure, 
and perhaps other useful data Such as mask data. 
0040. In addition to initializing the Control Registers 301, 
which should need to only be initialized once, there are other 
data fields that must be initialized for each individual DUT to 
be examined. This second batch of initialization is repre 
sented in step 403. In the embodiment shown in FIG. 4, 
ErrFlag is set to FALSE, ACC is set to 0, and AddrCounter is 
also set to 0. These variables can be mapped to the registers 
from FIG. 3. For example, ErrFlag can correspond to Error 
Flag 306, ACC can correspond to Accumulator 307, and 
AddrCounter can correspond to ADDR Counter 303. ErrFlag 
is set when a memory region of the DUT contains more errors 
than what the DUT can tolerate. ACC is used to track the 
running total of errors encountered in a memory region of the 
DUT. AddrCounter is used to track the address of memory 
undergoing analysis by the BERT technique. 
0041 At step 404 the sub-module implementing the 
BERT state machine waits for the Vector Engine to give the 
BERT state machine the clearance to begin its process. In this 
embodiment, this is accomplished by having the BERT sub 
module wait for the Vector Engine to set a flag to indicate that 
the DUT is ready to have its memory checked for bit errors. 
This can be signaled to the BERT state machine through the 
Vector Engine Enable line 312, although other well-known 
techniques can also be used to accomplish this task. Other 
wise, the BERT state machine must remain in an idle state 
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during other operations on the DUT that do not involve BERT 
Verification Such as erasure, blank checking, and program 
ming. 
0042. After the BERT state machine has verified that the 
Vector Engine has given clearance for the BERT technique to 
proceed, the BERT state machine synchronizes the ErrFlag. 
This is shown at step 405. This is done because there may 
have been a change in the proper value of the ErrFlag as a 
result of operations conducted on the DUT while the BERT 
state machine was waiting for the Vector Engine to set the 
Enable flag in step 404. It is possible that the Vector Engine 
could directly update the ErrFlag in the BERT state machine 
because some other error occurred during programming that 
renders the DUT a failure, but that may not always be the case. 
Thus, the BERT state machine may need to check modules in 
the Device Programmer to synchronize the ErrFlag to its 
correct value at this point in the process. 
0043. At step 406 the BERT state machine waits for the 
Verify sub-module to request the BERT to run its bit error 
analysis. Just as with the step 404, the BERT state machine 
waits for clearance from the Verify sub-module before begin 
ning its operation. This signal can be communicated to the 
BERT state machine through the Verify Request 311 line or 
any other Suitable technique. This waiting step prevents the 
BERT state machine from initiating inspection of the bit 
failures until the Verify sub-module has this information 
available. 

0044. After the BERT state machine has received the 
clearance from the Verify sub-module, the process of check 
ing the bits in the DUT begins at step 407. In step 407, the bits 
in the DUT at the address represented by AddrCounter are 
checked against the bits from the corresponding address in 
Data Memory in order to count how many bits are mis 
matched. This analysis can be done by the Comparator 308. 
There are many possible ways that this analysis can be con 
ducted. For example, the bits from the DUT and the bits from 
Data Memory could be combined through a bitwise XOR 
operation. The number of bits in the output of this operation 
set to “1” could then be totaled to achieve the total number of 
mismatched bits in this data segment. One skilled in the art 
will recognize that many other suitable methods for calculat 
ing the number of mismatched bits are available and can be 
implemented in the alternative. In the present embodiment, 
the total number of mismatched bits from this comparison is 
stored in register ADDER1309. 
0045. At step 408 the value stored in ADDER1309 is 
combined with the value of the ACC, which updates the 
running total of mismatched bits found in the DUT. 
0046. At step 409, the value of the ACC is then compared 
with the MaxErr, which is set to either register 313 or 314 in 
this embodiment depending upon the tolerance region of the 
DUT being verified at that particular point in time. If the 
number of errors recorded in the ACC is greater than MaxErr, 
then the bit in ErrFlag corresponding to the tolerance region 
is set to TRUE in step 410. Otherwise, ErrFlag is not modified 
and processing of the DUT continues through step 411. 
0047. The value of MaxErr depends on the configuration 
of the BERT analysis being conducted on the DUT. In some 
instances there may be a limit not only on the number of errors 
contained in the DUT's memory as a whole, but also on the 
number of errors contained in a given area of memory. This 
given area of memory can be referred to as a tolerance region. 
For example, ECC coding may be applied to the DUT's 
memory in pages, where each page has a maximum number 
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of errors that can be corrected through the ECC algorithm 
applied to the data. MaxErr might have one value for data 
segment of memory and a different value for the spare-area 
segment of memory. FIG.5, discussed further below, gives an 
example of how the BERT state-machine can move through 
different tolerance regions in the DUT and apply different 
values for system parameters such as SpareAreaLimit 313 
and MainAreaLimit 314. 

0048. After MaxErr has been compared to the number of 
errors detected in step 409 the BERT state machine runs 
through a number of steps to check its progress through the 
address space of the DUT. In step 412 LoopCounter is com 
pared with LoopSize. This check allows this embodiment to 
check the number of bit errors present in a sub-segment of 
memory. For example, any errors present in one Sub-segment 
of memory must not contribute to the error rate of another 
Sub-segment and so the memory area to be analyzed in the 
DUT has to be broken up into smaller pieces. If the segment 
of memory has been fully checked for bit errors, then Loop 
Size will be less than LoopCounter, and the LoopCounter and 
ACC will be reset to 0 as in step 414. Otherwise, LoopCounter 
will be incremented as shown in step 413. The loop size can 
be set to be the same as the Max Addr size so that in effect the 
entire memory space to be checked is considered to be one 
LoopSize. 
0049. In step 415 a check similar to the check at step 412 

is conducted. The difference is that the check at step 415 is 
conducted on the progress made through the entire memory 
space rather than just a loop segment. If the AddrCounter 
shows that the BERT state machine has checked all of the 
addresses up to and including the Max Addr, then the 
AddrCounter is reset. Otherwise, the AddrCounter is incre 
mented so that the next error region of the DUT can be 
inspected. 
0050. At step 418, NextMax Addr is set to 1. This variable 

is re-initialized to prepare the BERT state machine to process 
the next tolerance region by Subsequently causing MaxErr to 
be set to the next region's error rate limit and Max Addr to be 
set to the next region's highest address offset. As shown in 
FIG. 5, other operations in the Verify Engine may take place 
before the BERT state machine checks the next memory 
segment of the DUT for bit errors. 
0051. At step 419, the Vector Engine is checked again to 
see if it is set to "Enable.” This is similar to the check done at 
step 404. If it is detected that the Vector Engine has set the line 
to "Enable, then the state machine returns to step 406 and 
processing continues from that point in the state machine. 
Otherwise, the BERT processing is complete and the state 
machine, completes until signaled by the CPU to start again. 
0052. As is demonstrated in steps represented in FIG. 4, 
none of the individual operations that make up the BERT 
process are complicated or time consuming processes. This 
allows the entire process to take place very rapidly. The 
amount of time and resources spent conducting this analysis 
is a function of the number of bits to be checked, not any ECC 
algorithm implemented. For instance, with well-designed 
pipelining each DUT address can be verified with BERT per 
system clock. 
0053. It is possible that other optimizations could be 
implemented in the steps shown in FIG. 4. For example, once 
it is determined that ErrFlag is going to be set to TRUE, it may 
be possible to cease further processing on the DUT since the 
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DUT will be rejected. Other optimizations may also be appro 
priate based on the goals of the given embodiment of the 
invention. 
0054 FIG. 5 shows an example of a BERT reset state 
machine method for detecting the transition into a new toler 
ance region of the device according to one embodiment. A 
tolerance region is a region of memory that is grouped 
together for BERT purposes. For example, a tolerance region 
could be an area of memory that is grouped together for ECC 
purposes and each tolerance region in memory may have an 
independent bit failure tolerance limit. 
0055. In a given tolerance region, there are potentially two 
or more potential sub-areas. In the embodiment illustrated in 
FIG. 5, there are two different sub-areas that are each checked 
for bit errors individually. The two sub-areas represented in 
FIG. 5 are a Main Area and a Spare Area. An example of how 
these two areas can be used is related to ECC. The Main Area 
could hold the data related to the actual content or data to be 
used by a later application. The Spare Area could hold the 
error-correcting data used to correct any bits that may have 
been improperly transferred to the DUT. It is clear that the 
number of sub-areas can be custom tailored to fit the needs of 
a given application, and the process in FIG. 5 can be easily 
extended to accommodate additional Sub-areas. 
0056. In the example state machine shown in FIG. 5, the 
process begins at step 501. In step 502, the state machine sets 
the Max Addrand the MaxErr to the values appropriate for the 
region about to be examined. Max Addr defines the top 
address in the area of memory to be checked. MaxErr defines 
the maximum number of bit errors that are acceptable in the 
memory region to be checked. The values for these variables 
can vary for different DUTs and different sets of data to be 
transferred into a DUT. 
0057. At step 503, LoopSize is calculated. As discussed 

earlier, LoopSize is used by the BERT state machine to break 
up the memory area to be checked into chunks. In this 
instance, LoopSize is determined by applying SubMainAr 
eaMask to Max Addr through a “&& operation. There are 
many other possible ways to calculated LoopSize. 
0058. Once the steps at 502 and 503 are completed, the 
state machine then waits for NextMax Addr to be set to TRUE 
or 1. The BERT state machine checks the main memory area 
for bit errors while the state machine waits in this loop. One 
skilled in the art will recognize that other triggering or sig 
naling mechanisms can be used at this step as well. 
0059. After the state machine recognizes that the main 
address has been fully checked for bit errors, the state 
machine checks to see if there is any spare area that needs to 
be checked. If there is no spare memory area to be checked, 
then the State Machine returns to its initial state and waits for 
the next DUT to be checked. If there is a spare area to be 
checked, then the process outlined in steps 506,507, and 508 
are executed. These steps are very similar to steps 502, 503, 
and 504, but use different values for Max Addr, MaxErr, and 
LoopSize. In the example embodiment shown, Max Addr is 
set to SpareAreaMax Addr, MaxErr is set to SpareAreaError 
Limitm and LoopSize is set to Max Addr. Since LoopSize is 
set to be the same as Max Addr in this example, then only one 
“loop' needs to be made through the Spare Area since the size 
of the loop is the same size as the entire Spare Area. Once 
these variables are set, the state machine again waits for the 
memory area to be checked for bit errors. After the bit error 
check is complete, the state machine returns to its initial state 
to wait for the next DUT to be checked. 
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0060 Any software components or functions described 
herein may be implemented as software code to be executed 
by a processor using any Suitable computer language Such as, 
for example, Java, C++ or Perl using, for example, conven 
tional or object-oriented techniques. The Software code may 
be stored as a series of instructions, or commands on a com 
puter readable medium, Such as a random access memory 
(RAM), a read only memory (ROM), a magnetic medium 
Such as a hard-drive or a floppy disk, or an optical medium 
such as a CD-ROM. Any such computer readable medium 
may reside on or within a single computational apparatus, and 
may be present on or within different computational appara 
tuses within a system or network. 
0061 The modules, sub-modules, and other components 
referenced in this description can be implemented in a variety 
of ways. The selection of particular means for implementing 
the above described features is illustrative but not restrictive. 
Many variations of the invention will become apparent to 
those skilled in the art upon review of the disclosure. For 
example, while many pieces of data used by the invention are 
represented as being Stored in registers, there is no reason why 
the same pieces of data could not be stored in RAM or in other 
locations. The scope of the invention should, therefore, be 
determined not with reference to the above description, but 
instead should be determined with reference to the pending 
claims along with their full scope or equivalents. 
0062. A recitation of “a”, “an or “the is intended to mean 
“one or more unless specifically indicated to the contrary. 
0063 All patents, patent applications, publications, and 
descriptions mentioned above are herein incorporated by ref 
erence in their entirety for all purposes. None is admitted to be 
prior art. 
What is claimed is: 
1. A method for using a bit error rate tolerance technique 

during high-speed programming of non-volatile memory 
devices, the method comprising: 

receiving a tolerance value representing a maximum num 
ber of bit errors that a memory region in a non-volatile 
memory device can tolerate; 

analyzing a memory region of the non-volatile memory 
device to find the number of bit errors contained in the 
memory region of the device without running an error 
correcting code algorithm; 

comparing the number of bit errors found in the analyzed 
memory region of the non-volatile memory device to the 
tolerance value; and 

rejecting the non-volatile memory device if the number of 
bit errors found in the analyzed memory region of the 
non-volatile memory device is greater than the tolerance 
value. 

2. The method of claim 1 wherein the tolerance value is 
determined using a function of an error correcting code algo 
rithm used to encode the data transferred into the non-volatile 
memory device. 

3. The method of claim 1 wherein the memory region is one 
of a plurality of memory regions in the non-volatile memory 
device, wherein the steps of analyzing, comparing, and reject 
ing are repeated for each memory region of the device. 

4. The method of claim 1 wherein the step of analyzing a 
memory region comprises using a bitwise XOR operation to 
find the number of bit errors contained in the memory region 
of the device. 

5. The method of claim 1 wherein the memory region 
comprises a main memory area and a spare memory area, 
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wherein the analyzed memory region is the main memory 
area, the method of claim 1 further comprising: 

receiving a second tolerance value representing a maxi 
mum number of bit errors that a spare memory area in 
the non-volatile memory device can tolerate; 

analyzing the spare memory area of the non-volatile 
memory device to find the number of biterrors contained 
in the spare memory area of the device; 

comparing the number of bit errors found in the analyzed 
spare memory area of the non-volatile memory device to 
the second tolerance value; and 

rejecting the non-volatile memory device if the number of 
bit errors found in the spare memory area of the non 
Volatile memory device is greater than the second toler 
ance value. 

6. The method of claim 5 wherein the tolerance value and 
the second tolerance value are not the same value. 

7. The method of claim 5 wherein the spare memory area 
stores error correcting data that can be used to correct bit 
errors in the main memory area. 

8. The method of claim 1 further comprising: 
analyzing a memory region of a second non-volatile 
memory device to find the number of biterrors contained 
in the memory region of the second device without run 
ning an error correcting code algorithm; 

comparing the number of bit errors found in the analyzed 
memory region of the second non-volatile memory 
device to the tolerance value; and 

rejecting the second non-volatile memory device if the 
number of bit errors found in the analyzed memory 
region of the second non-volatile memory device is 
greater than the tolerance value; 

wherein the non-volatile memory device and the second 
non-volatile memory device are analyzed, compared, 
and rejected Substantially at the same time. 

9. The method of claim 1 wherein the non-volatile memory 
device is a multiple level cell NAND flash device. 

10. The method of claim 1 further comprising: 
assembling the non-volatile memory device into an embed 

ded system if the device is not rejected. 
11. A device programmer apparatus for programming a 

non-volatile memory device, the apparatus comprising: 
means for storing data to be transferred into memory of a 

non-volatile memory device; 
means for transferring data into memory of the non-vola 

tile memory device: 
means for analyzing a memory region of the non-volatile 
memory device that stores the transferred data to find the 
number of bit errors contained in the memory region 
without running an error correcting code algorithm; 

means for comparing the number of bit errors found in the 
analyzed memory region of the non-volatile memory 
device to a tolerance value representing a maximum 
number of bit errors that a memory region in the memory 
device can tolerate; and 

means for rejecting the non-volatile memory device if the 
number of bit errors found in the analyzed memory 
region of the non-volatile memory device is greater than 
the tolerance value. 

12. The device programmer apparatus of claim 11 wherein 
the tolerance value is determined using a function of an error 
correcting code algorithm used to encode the data transferred 
into the non-volatile memory device. 
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13. The device programmer apparatus of claim 11 wherein 
the memory region is one of a plurality of memory regions in 
the non-volatile memory device, wherein the means for trans 
ferring, means for analyzing, and means for comparing are 
each adapted to operate against each memory area in the 
non-volatile memory device, 

14. The device programmer apparatus of claim 11 wherein 
the means for analyzing a memory region is adapted to use a 
bitwise XOR operation to find the number of bit errors con 
tained in the memory region of the device. 

15. The device programmer apparatus of claim 11 wherein 
the memory region comprises a main memory area and a 
spare memory area, wherein the analyzed memory region is 
the main memory area, the device programmer apparatus of 
claim 11 further comprising: 
means for selecting a second tolerance value representing a 
maximum number of bit errors that a spare memory area 
in the non-volatile memory device can tolerate; 

means for analyzing the spare memory area of the non 
volatile memory device to find the number of bit errors 
contained in the spare memory area of the device with 
out running an error correcting code algorithm; 

means for comparing the number of bit errors found in the 
analyzed spare memory area of the non-volatile memory 
device to the second tolerance value; and 

means for rejecting the non-volatile memory device if the 
number of bit errors found in the spare memory area of 
the non-volatile memory device is greater than the sec 
ond tolerance value. 

16. The device programmer apparatus of claim 15 wherein 
the tolerance value and the second tolerance value are not the 
same value. 

17. The device programmer apparatus of claim 15 wherein 
the spare memory area stores error correcting data that can be 
used to correct bit errors in the main memory area. 

18. The device programmer apparatus of claim 11 wherein 
the non-volatile memory device is a multiple level cell NAND 
flash device. 

19. The device programmer apparatus of claim 11 wherein 
the non-volatile memory device is later assembled into a 
larger embedded system. 

20. The device programmer apparatus of claim 11 wherein 
the means for storing data, means for transferring data, means 
for analyzing a memory region, means for comparing the 
number of bit errors, and means for rejecting the non-volatile 
device are each adapted to operate on multiple non-volatile 
devices Substantially at the same time. 

21. A computer readable medium with computer-execut 
able code comprising: 

code for receiving a tolerance value representing a maxi 
mum number of bit errors that a memory region in a 
non-volatile memory device can tolerate; 

code for analyzing a memory region of the non-volatile 
memory device to find the number of biterrors contained 
in the memory region of the device without running an 
error correcting code algorithm; 

code for comparing the number of bit errors found in the 
analyzed memory region of the non-volatile memory 
device to the tolerance value; and 

code for rejecting the non-volatile memory device if the 
number of bit errors found in the analyzed memory 
region of the non-volatile memory device is greater than 
the tolerance value. 


